The radius of convexity of normalized Bessel functionsРадиус выпуклости нормализованных функций Бесселя

被引:0
作者
Árpád Baricz
Róbert Szász
机构
[1] Babeş-Bolyai University,Department of Economics
[2] Óbuda University,Institute of Applied Mathematics
[3] Sapientia Hungarian University of Transylvania,Department of Mathematics and Informatics
来源
Analysis Mathematica | 2015年 / 41卷
关键词
Bessel Function; Independent Interest; Real Zero; Positive Zero; Complex Zero;
D O I
暂无
中图分类号
学科分类号
摘要
The radius of convexity of two normalized Bessel functions of the first kind are determined in the case when the order is between -2 and -1. Our methods include the minimum principle for harmonic functions, the Hadamard factorization of some Dini functions, properties of the zeros of Dini functions via Lommel polynomials and some inequalities for complex and real numbers. The results on the zeros of the combination of Bessel functions of the first kind may be of independent interest.
引用
收藏
页码:141 / 151
页数:10
相关论文
共 10 条
  • [1] Baricz P. A.(2014)The radius of starlikeness of normalized Bessel functions of the first kind Proc. Amer. Math. Soc. 142 2019-2025
  • [2] Kupán R.(2014)The radius of convexity of normalized Bessel functions of the first kind Anal. Appl. 12 485-509
  • [3] Szász R.(1960)Univalence of Bessel Functions Proc. Amer. Math. Soc. 11 278-283
  • [4] Baricz R. K.(1889)Über die Nullstellen der Besselschen Funktionen Math. Ann. 33 246-266
  • [5] Szász A.(1976)Sulle radici dell’equazione: Atti Sem. Mat. Fis. Univ. Modena 24 399-419
  • [6] Brown R.(2015)( Monats. Math. 176 323-330
  • [7] Hurwitz R.(1921)) + Proc. London Math. Soc. 19 266-272
  • [8] Spigler G. N.(undefined)′ undefined undefined undefined-undefined
  • [9] Szász undefined(undefined)( undefined undefined undefined-undefined
  • [10] Watson undefined(undefined)) = 0 undefined undefined undefined-undefined