Frames for Metric Spaces

被引:0
作者
K. Mahesh Krishna
P. Sam Johnson
机构
[1] Indian Statistical Institute,Stat
[2] Bangalore Centre,Math Unit
[3] National Institute of Technology Karnataka (NITK),Department of Mathematical and Computational Sciences
来源
Results in Mathematics | 2022年 / 77卷
关键词
Frame; metric space; Lipschitz function; 42C15; 54E35; 26A16;
D O I
暂无
中图分类号
学科分类号
摘要
We make a systematic study of frames for metric spaces. We prove that every separable metric space admits a metric Md\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_d$$\end{document}-frame. Through Lipschitz-free Banach spaces we show that there is a correspondence between frames for metric spaces and frames for subsets of Banach spaces. We derive some characterizations of metric frames. We also derive stability results for metric frames.
引用
收藏
相关论文
共 84 条
[1]  
Aldroubi A(1995)Portraits of frames Proc. Amer. Math. Soc. 123 1661-1668
[2]  
Aldroubi A(2008)Slanted matrices, Banach frames, and sampling J. Funct. Anal. 255 1667-1691
[3]  
Baskakov A(2001)-frames and shift invariant subspaces of J. Fourier Anal. Appl. 7 1-21
[4]  
Krishtal I(1999)Equivalence relations and distances between Hilbert frames Proc. Amer. Math. Soc. 127 2353-2366
[5]  
Aldroubi A(2007)Frame decomposition of decomposition spaces J. Fourier Anal. Appl. 13 39-70
[6]  
Sun Q(2009)Duality, reflexivity and atomic decompositions in Banach spaces Stud. Math. 191 67-80
[7]  
Tang W-S(2011)The reconstruction formula for Banach frames and duality J. Approx. Theory 163 640-651
[8]  
Balan R(2005)Frame expansions in separable Banach spaces J. Math. Anal. Appl. 307 710-723
[9]  
Borup L(2008)The reconstruction property in Banach spaces and a perturbation theorem Can. Math. Bull. 51 348-358
[10]  
Nielsen M(1997)Perturbation of operators and applications to frame theory J. Fourier Anal. Appl. 3 543-557