Maps Preserving the ∂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial $$\end{document}-Spectrum of Product or Triple Product of Operators

被引:0
作者
Hassane Benbouziane
Aukacha Daoudi
Mustapha Ech-Chérif El Kettani
Ismail El Khchin
机构
[1] University Sidi Mohammed Ben Abdellah,Faculty of Sciences DharMahraz Fes
关键词
Nonlinear preservers problem; -spectrum; Product; Triple product of operators; Primary 47B49; Secondary 47B48; 46H05;
D O I
10.1007/s00009-023-02501-3
中图分类号
学科分类号
摘要
Let X be an infinite-dimensional Banach space, and B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(X)$$\end{document} be the algebra of all bounded linear operators on X. A map Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, from B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B}(X) $$\end{document} into a closed subsets of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {C}\ $$\end{document} is said to be ∂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial $$\end{document}-spectrum if ∂(σ(T))⊆Δ(T)⊆σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial (\sigma (T))\subseteq \Delta (T) \subseteq \sigma (T) $$\end{document} for all T∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \in \mathcal {B}(X)$$\end{document}. Here, σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma (T) $$\end{document} is spectrum of T and ∂(σ(T))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial (\sigma (T)) $$\end{document} the boundary of σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (T)$$\end{document}. In this paper, we determine the forms of all surjective maps ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi $$\end{document} from B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B}(X) $$\end{document} into itself that satisfy either Δ(ϕ(T)ϕ(S))=Δ(TS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\phi (T)\phi (S)) = \Delta ( TS) $$\end{document} for all T,S∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T, S \in \mathcal {B}(X)$$\end{document} or Δ(ϕ(T)ϕ(S)ϕ(T))=Δ(TST)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\phi (T)\phi (S)\phi (T)) = \Delta (TST) $$\end{document} for all T,S∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T, S\in \mathcal {B}(X) $$\end{document}.
引用
收藏
相关论文
共 50 条
[31]   Continuity of the spectra for families of magnetic operators on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z^d$$\end{document} [J].
D. Parra ;
S. Richard .
Analysis and Mathematical Physics, 2016, 6 (4) :327-343
[32]   The Spectrality of a Class of Fractal Measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{n}$$\end{document} [J].
Jing Cheng Liu ;
Zhi Yong Wang ;
Yao Liu ;
Ya Shi .
Acta Mathematica Sinica, English Series, 2023, 39 (5) :952-966
[33]   Decomposition of the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\epsilon )$$\end{document}-pseudospectrum of an element of a Banach algebra [J].
Kousik Dhara ;
S. H. Kulkarni .
Advances in Operator Theory, 2020, 5 (1) :248-260
[34]   Continuity of the (n,ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(n,\epsilon )}$$\end{document}-Pseudospectrum in Banach Algebras [J].
Kousik Dhara ;
S. H. Kulkarni ;
Markus Seidel .
Integral Equations and Operator Theory, 2019, 91 (4)
[35]   Spectral Properties of Sierpinski Measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} [J].
Xin-Rong Dai ;
Xiao-Ye Fu ;
Zhi-Hui Yan .
Constructive Approximation, 2024, 60 (1) :165-196
[37]   CR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{CR}$$\end{document}-submanifolds and CR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{CR}$$\end{document}-products of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric semi-metric connection [J].
Mobin Ahmad ;
Abdul Haseeb ;
Jae-Bok Jun ;
M. Hasan Shahid .
Afrika Matematika, 2014, 25 (4) :1113-1124
[40]   Recognition by spectrum of the groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ ^2 D_{2^m + 1} (3) $$\end{document} [J].
A. S. Kondrat’ev .
Science in China Series A: Mathematics, 2009, 52 (2) :293-300