Maps Preserving the ∂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial $$\end{document}-Spectrum of Product or Triple Product of Operators

被引:0
作者
Hassane Benbouziane
Aukacha Daoudi
Mustapha Ech-Chérif El Kettani
Ismail El Khchin
机构
[1] University Sidi Mohammed Ben Abdellah,Faculty of Sciences DharMahraz Fes
关键词
Nonlinear preservers problem; -spectrum; Product; Triple product of operators; Primary 47B49; Secondary 47B48; 46H05;
D O I
10.1007/s00009-023-02501-3
中图分类号
学科分类号
摘要
Let X be an infinite-dimensional Banach space, and B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(X)$$\end{document} be the algebra of all bounded linear operators on X. A map Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, from B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B}(X) $$\end{document} into a closed subsets of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {C}\ $$\end{document} is said to be ∂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial $$\end{document}-spectrum if ∂(σ(T))⊆Δ(T)⊆σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial (\sigma (T))\subseteq \Delta (T) \subseteq \sigma (T) $$\end{document} for all T∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \in \mathcal {B}(X)$$\end{document}. Here, σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma (T) $$\end{document} is spectrum of T and ∂(σ(T))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \partial (\sigma (T)) $$\end{document} the boundary of σ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (T)$$\end{document}. In this paper, we determine the forms of all surjective maps ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi $$\end{document} from B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B}(X) $$\end{document} into itself that satisfy either Δ(ϕ(T)ϕ(S))=Δ(TS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\phi (T)\phi (S)) = \Delta ( TS) $$\end{document} for all T,S∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T, S \in \mathcal {B}(X)$$\end{document} or Δ(ϕ(T)ϕ(S)ϕ(T))=Δ(TST)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta (\phi (T)\phi (S)\phi (T)) = \Delta (TST) $$\end{document} for all T,S∈B(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T, S\in \mathcal {B}(X) $$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   Toeplitz Operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}^p$$\end{document}-Spaces of a Tree [J].
Mingmei Huang ;
Xiaoyan Zhang ;
Xianfeng Zhao .
Mediterranean Journal of Mathematics, 2023, 20 (6)
[23]   Nonlinear maps preserving higher-dimensional numerical ranges of Jordan ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-products [J].
Chaoqun Chen ;
Fangyan Lu .
Annals of Functional Analysis, 2020, 11 (1) :185-193
[24]   Recognizing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ A_{7} $\end{document} by Its Set of Element Orders [J].
A. S. Mamontov ;
E. Jabara .
Siberian Mathematical Journal, 2021, 62 (1) :93-104
[26]   ‘‘Real’’ Subalgebras of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{C}^{\boldsymbol{\ast}}$$\end{document}-Algebras [J].
T. A. Grigoryan ;
A. Sh. Sharafutdinov .
Lobachevskii Journal of Mathematics, 2023, 44 (6) :2020-2026
[27]   A spectral characterization of isomorphisms on C⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\star $$\end{document}-algebras [J].
R. Brits ;
F. Schulz ;
C. Touré .
Archiv der Mathematik, 2019, 113 (4) :391-398
[28]   A New Resolvent Equation for the S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}-Functional Calculus [J].
Daniel Alpay ;
Fabrizio Colombo ;
Jonathan Gantner ;
Irene Sabadini .
The Journal of Geometric Analysis, 2015, 25 (3) :1939-1968
[29]   A-Spectral Permanence Property for C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras [J].
Mohamed Mabrouk ;
Ali Zamani .
Mediterranean Journal of Mathematics, 2024, 21 (1)