Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature

被引:0
|
作者
Nobumitsu Nakauchi
Hajime Urakawa
机构
[1] Yamaguchi University,Graduate School of Science and Engineering
[2] Tohoku University,Institute for International Education
来源
Annals of Global Analysis and Geometry | 2011年 / 40卷
关键词
Harmonic map; Biharmonic map; Isometric immersion; Minimal; Ricci curvature; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we show that, for a biharmonic hypersurface (M, g) of a Riemannian manifold (N, h) of non-positive Ricci curvature, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g<\infty}$$\end{document}, where H is the mean curvature of (M, g) in (N, h), then (M, g) is minimal in (N, h). Thus, for a counter example (M, g) in the case of hypersurfaces to the generalized Chen’s conjecture (cf. Sect. 1), it holds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g=\infty}$$\end{document} .
引用
收藏
页码:125 / 131
页数:6
相关论文
共 50 条
  • [12] Ricci Curvature of Real Hypersurfaces in Non-flat Complex Space Forms
    Toru Sasahara
    Mediterranean Journal of Mathematics, 2018, 15
  • [13] Ricci curvature and conformality of Riemannian manifolds to spheres
    Gamara, Najoua
    Eljazi, Salem
    Guemri, Habiba
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2010, 1 (01) : 35 - 46
  • [14] On conformal Riemannian maps whose total manifold admits a Ricci soliton
    Gupta, Garima
    Sachdeva, Rashmi
    Kumar, Rakesh
    Rani, Rachna
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [15] On the principal Ricci curvatures of a Riemannian 3-manifold
    Aazami, Amir Babak
    Melby-Thompson, Charles M.
    ADVANCES IN GEOMETRY, 2019, 19 (02) : 251 - 262
  • [16] Complete harmonic stable minimal hypersurfaces in a Riemannian manifold
    Cheng, Qing-Ming
    Suh, Young Jin
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 121 - 134
  • [17] Graphs with Positive Ricci Curvature
    Huang, Qiqi
    He, Weihua
    Zhang, Chaoqin
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [18] Curvature pinching for three-dimensional submanifolds in a Riemannian manifold
    Gu, Juanru
    Lu, Yao
    Xu, Hongwei
    Zhao, Entao
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2025, 99
  • [19] Ricci curvature of spacelike hypersurfaces in de Sitter space
    Zhu, Yecheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (04) : 517 - 523
  • [20] On the fundamental group of Riemannian manifolds with nonnegative Ricci curvature
    Bing Ye Wu
    Geometriae Dedicata, 2013, 162 : 337 - 344