Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature

被引:0
|
作者
Nobumitsu Nakauchi
Hajime Urakawa
机构
[1] Yamaguchi University,Graduate School of Science and Engineering
[2] Tohoku University,Institute for International Education
来源
Annals of Global Analysis and Geometry | 2011年 / 40卷
关键词
Harmonic map; Biharmonic map; Isometric immersion; Minimal; Ricci curvature; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we show that, for a biharmonic hypersurface (M, g) of a Riemannian manifold (N, h) of non-positive Ricci curvature, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g<\infty}$$\end{document}, where H is the mean curvature of (M, g) in (N, h), then (M, g) is minimal in (N, h). Thus, for a counter example (M, g) in the case of hypersurfaces to the generalized Chen’s conjecture (cf. Sect. 1), it holds that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_M\vert H\vert^2 v_g=\infty}$$\end{document} .
引用
收藏
页码:125 / 131
页数:6
相关论文
共 50 条
  • [1] Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (02) : 125 - 131
  • [2] Biharmonic Submanifolds in a Riemannian Manifold with Non-Positive Curvature
    Nobumitsu Nakauchi
    Hajime Urakawa
    Results in Mathematics, 2013, 63 : 467 - 474
  • [3] Biharmonic Submanifolds in a Riemannian Manifold with Non-Positive Curvature
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 467 - 474
  • [4] Biharmonic maps into a Riemannian manifold of non-positive curvature
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    Gudmundsson, Sigmundur
    GEOMETRIAE DEDICATA, 2014, 169 (01) : 263 - 272
  • [5] Biharmonic maps into a Riemannian manifold of non-positive curvature
    Nobumitsu Nakauchi
    Hajime Urakawa
    Sigmundur Gudmundsson
    Geometriae Dedicata, 2014, 169 : 263 - 272
  • [6] LOCAL GRADIENT ESTIMATE ON RIEMANNIAN MANIFOLD WITH ASYMPTOTICALLY NON-NEGATIVE RICCI CURVATURE
    Chong, Tian
    Liu, Hui
    Lu, Lingen
    Zhang, Jingjing
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2025, 62 (01) : 165 - 178
  • [7] Ricci Curvature Tensor and Non-Riemannian Quantities
    Li, Benling
    Shen, Zhongmin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 530 - 537
  • [8] Ricci flow on a 3-manifold with positive scalar curvature
    Qian, Zhongmin
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (02): : 145 - 168
  • [9] Information Manifold and Ricci Curvature
    Tao, Mo
    Wang, Shaoping
    Chen, Hong
    Liu, Zhi
    Lei, Yi
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 808 - 812
  • [10] A RIGIDITY THEOREM FOR HYPERSURFACES WITH POSITIVE MOBIUS RICCI CURVATURE IN Sn+1
    Hu, Zejun
    Li, Haizhong
    TSUKUBA JOURNAL OF MATHEMATICS, 2005, 29 (01) : 29 - 47