Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions

被引:0
作者
M. Gubinelli
B. Ugurcan
I. Zachhuber
机构
[1] Universität Bonn,Hausdorff Center for Mathematics and Institut fur Angewandte Mathematik
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2020年 / 8卷
关键词
Evolution equations; Anderson Hamiltonian; White noise;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze nonlinear Schrödinger and wave equations whose linear part is given by the renormalized Anderson Hamiltonian in two and three dimensional periodic domains.
引用
收藏
页码:82 / 149
页数:67
相关论文
共 12 条
  • [1] Babuška I(1971)Error-bounds for finite element method Numer. Math. 16 322-333
  • [2] Bourgain J(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations Geom. Funct. Anal. GAFA 3 209-262
  • [3] Brezis H(1980)Nonlinear Schrödinger evolution equations Nonlinear Anal. Theory Methods Appl. 4 677-681
  • [4] Gallouet T(2004)Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds Am. J. Math. 126 569-605
  • [5] Burq N(2017)KPZ reloaded Commun. Math. Phys. 349 165-269
  • [6] Gérard P(2014)A theory of regularity structures Invent. Math. 198 269-504
  • [7] Tzvetkov N(2015)A simple construction of the continuum parabolic Anderson model on Electron. Commun. Probab. 20 11-undefined
  • [8] Gubinelli M(undefined)undefined undefined undefined undefined-undefined
  • [9] Perkowski N(undefined)undefined undefined undefined undefined-undefined
  • [10] Hairer M(undefined)undefined undefined undefined undefined-undefined