Stable periodic solutions in the forced pendulum equation

被引:0
作者
Rafael Ortega
机构
[1] Universidad de Granada,Departamento de Matemática Aplicada, Facultad de Ciencias
来源
Regular and Chaotic Dynamics | 2013年 / 18卷
关键词
Lyapunov stability; forced pendulum; prevalence; periodic solution; regular value; discriminant; 34D20; 34C15; 34C25; 37C25; 58K05;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the pendulum equation with an external periodic force and an appropriate condition on the length parameter. It is proved that there exists at least one stable periodic solution for almost every external force with zero average. The stability is understood in the Lyapunov sense.
引用
收藏
页码:585 / 599
页数:14
相关论文
共 28 条
  • [1] Hua Y(2013)Stability of Elliptic Periodic Points with an Application to Lagrangian Equilibrium Solutions Qual. Theory Dyn. Syst. 12 243-253
  • [2] Xia Z(2003)Twist Character of the Least Amplitude Periodic Solution of the Forced Pendulum SIAM J. Math. Anal. 35 844-867
  • [3] Lei J(2005)Twist Character of the Fourth Order Resonant Periodic Solution J. Dynam. Differential Equations 17 21-50
  • [4] Li X(2000)Lipschitz Image of a Measure-Null Set Can Have a Null Complement Israel J. Math. 118 207-219
  • [5] Yan P(1980)Periodic Orbits and Solenoids in Generic Hamiltonian Dynamical Systems Amer. J. Math. 102 25-92
  • [6] Zhang M(1991)Generic Results for the Existence of Nondegenerate Periodic Solutions of Some Differential Systems with Periodic Nonlinearities J. Differential Equations 91 138-148
  • [7] Lei J(1984)Multiple Solutions of the Periodic Boundary Value Problem for Some Forced Pendulum-Type Equations J. Differential Equations 52 264-287
  • [8] Torres P J(1981)An example of a Schroedinger Equation with Almost Periodic Potential and Nowhere Dense Spectrum Comment. Math. Helv. 56 198-224
  • [9] Zhang M(2002)The Method of Lower and Upper Solutions and the Stability of Periodic Oscillations Nonlinear Anal. 51 1207-1222
  • [10] Lindenstrauss J(1989)Stability and Index of Periodic Solutions of an Equation of Duffing Type Boll. Un. Mat. Ital. B(7) 3 533-546