Poisson convergence of eigenvalues of circulant type matrices

被引:0
作者
Arup Bose
Rajat Subhra Hazra
Koushik Saha
机构
[1] Indian Statistical Institute,Statistics and Mathematics Unit
来源
Extremes | 2011年 / 14卷
关键词
Circulant matrix; -circulant matrix; Eigenvalues; Large dimensional random matrix; Moving average process; Normal approximation; Point process; Poisson random measure; Reverse circulant matrix; Spectral density; Symmetric circulant matrix; 60B20; 60G55; 60F99;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the point processes based on the eigenvalues of the reverse circulant, symmetric circulant and k-circulant matrices with i.i.d. entries and show that they converge to a Poisson random measures in vague topology. The joint convergence of upper ordered eigenvalues and their spacings follow from this. We extend these results partially to the situation where the entries are come from a two sided moving average process.
引用
收藏
页码:365 / 392
页数:27
相关论文
共 50 条
  • [21] Convergence Radii for Eigenvalues of Tri-Diagonal Matrices
    James Adduci
    Plamen Djakov
    Boris Mityagin
    Letters in Mathematical Physics, 2010, 91
  • [22] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Marko Huhtanen
    Allan Perämäki
    Journal of Fourier Analysis and Applications, 2015, 21 : 1018 - 1033
  • [23] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Huhtanen, Marko
    Peramaki, Allan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (05) : 1018 - 1033
  • [24] THE CONSTRUCTION OF CIRCULANT MATRICES RELATED TO MDS MATRICES
    Malakhov, S. S.
    Rozhkov, M., I
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2022, (56): : 17 - 27
  • [25] Positive integer powers for one type of odd order circulant matrices
    Koken, Fikri
    Bozkurt, Durmus
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4377 - 4381
  • [26] Fourier and circulant matrices are not rigid
    Dvir Z.
    Liu A.
    Theory of Computing, 2020, 16
  • [27] Fourier and Circulant Matrices Are Not Rigid
    Dvir, Zeev
    Liu, Allen
    34TH COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2019), 2019, 137
  • [28] On the eigenvectors of generalized circulant matrices
    Andrade, Enide
    Carrasco-Olivera, Dante
    Manzaneda, Cristina
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16) : 2639 - 2652
  • [29] On circulant complex Hadamard matrices
    Arasu, KT
    De Launey, W
    Ma, SL
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 123 - 142
  • [30] On Circulant Complex Hadamard Matrices
    K. T. Arasu
    Warwick de Launey
    S. L. Ma
    Designs, Codes and Cryptography, 2002, 25 : 123 - 142