On the use of neural network techniques to analyze sleep EEG dataSecond communication: Training of evolutionary optimized neural networks on the basis of multiple subjects data and the application of context rules according to Rechtschaffen and KalesÜber den Nutzen Neuronaler Netzwerk-Techniken zur Analyse von Schalaf-EEG-DatenTeil II: Training von evolutionär optimierten neuronalen Netzwerken und Applikation von Kontext-Regeln auf der Basis der Regeln von Rechtschaffen und Kales

被引:0
作者
R. Baumgart-Schmitt
R. Eilers
W. M. Herrmann
机构
[1] Free University of Berlin,Department of Electrical Engineering, SIT (Schmalkalden Institute of Technology)
[2] Free University of Berlin,Interdisciplinary Sleep Clinic, Department of Psychiatry, Benjamin Franklin Hospital
[3] PAREXEL International Corporation,Labor für Klinische Psychophysiologie
[4] Psychiatrische Klinik FUB,undefined
来源
Somnologie - Zeitschrift für Schlafforschung und Schlafmedizin | 1997年 / 1卷 / 4期
关键词
automated sleep stage scoring; neural network classification; Automatische Schlafstadien-Analyse; neuronale Netzwerk Klassifikation;
D O I
10.1007/s11818-997-0031-3
中图分类号
学科分类号
摘要
The system SASCIA (Sleep Analysis System to Challenge Innovative Artificial Networks) is applied to automate the sleep stage scoring. The information content of only one EEG channel (C4-A2) was use. The results of 16 nights from 9 different subjects were used to test the performance of the system.
引用
收藏
页码:171 / 183
页数:12
相关论文
共 74 条
  • [71] Wastenburg JC(undefined)undefined undefined undefined undefined-undefined
  • [72] Elton M(undefined)undefined undefined undefined undefined-undefined
  • [73] Hofman W(undefined)undefined undefined undefined undefined-undefined
  • [74] Koak A(undefined)undefined undefined undefined undefined-undefined