On the use of neural network techniques to analyze sleep EEG dataSecond communication: Training of evolutionary optimized neural networks on the basis of multiple subjects data and the application of context rules according to Rechtschaffen and KalesÜber den Nutzen Neuronaler Netzwerk-Techniken zur Analyse von Schalaf-EEG-DatenTeil II: Training von evolutionär optimierten neuronalen Netzwerken und Applikation von Kontext-Regeln auf der Basis der Regeln von Rechtschaffen und Kales

被引:0
作者
R. Baumgart-Schmitt
R. Eilers
W. M. Herrmann
机构
[1] Free University of Berlin,Department of Electrical Engineering, SIT (Schmalkalden Institute of Technology)
[2] Free University of Berlin,Interdisciplinary Sleep Clinic, Department of Psychiatry, Benjamin Franklin Hospital
[3] PAREXEL International Corporation,Labor für Klinische Psychophysiologie
[4] Psychiatrische Klinik FUB,undefined
来源
Somnologie - Zeitschrift für Schlafforschung und Schlafmedizin | 1997年 / 1卷 / 4期
关键词
automated sleep stage scoring; neural network classification; Automatische Schlafstadien-Analyse; neuronale Netzwerk Klassifikation;
D O I
10.1007/s11818-997-0031-3
中图分类号
学科分类号
摘要
The system SASCIA (Sleep Analysis System to Challenge Innovative Artificial Networks) is applied to automate the sleep stage scoring. The information content of only one EEG channel (C4-A2) was use. The results of 16 nights from 9 different subjects were used to test the performance of the system.
引用
收藏
页码:171 / 183
页数:12
相关论文
共 74 条
  • [1] Achermann P(1994)Correlation dimension of the human sleep electroencephalogram: cyclic changes in the course of the night Eur J Neurosci 6 497-497
  • [2] Hartmann R(1997)On the Use of Neural Network Techniques to Analyse Sleep-EEG Date: First Communication: Application of evolutionary and genetic algorithms to reduce the feature space and to develop classfication rules Neuropsychobiology 36 194-210
  • [3] Gunzinger A(1998)On the Use of Neural Network Techniques to Analyse Sleep-EEG Date: Third Communication: Robustification of the classificator by applying an algorithm obtained from 9 different networks Neuropsychobiology 37 49-58
  • [4] Guggenbuehl W(1993)Deterministic chaos and the first positive Lyapunov exponent: A nonlinear analysis of the human electroencephalogram during sleep Biol Cybernet 69 139-46
  • [5] Borbely AA(1994)Nonlinear dynamical aspects of the human sleep EEG Int J Neurosci 76 109-129
  • [6] Baumgart-Schmitt R(1989)Comparison between the results of an automatic and a visual scoring of sleep EEG recordings Sleep 12 354-62
  • [7] Herrmann WM(1973)Principles of automatic analysis of sleep records with a hybrid system Comput Biomed Res 6 1-13
  • [8] Eilers R(1983)Differentiation of normal and disturbed sleep by automatic analysis Acta Physiol Scand Suppl 526 1-103
  • [9] Bes F(1985)Automatic analysis of sleep recordings: A critical review Ann Clin Res 17 280-287
  • [10] Baumgart-Schmitt R(1996)Past and future of computer-assisted sleep analysis and drowsiness assessment J Clin Neurophysiol 13 295-313