Quadrature finite element method for elliptic eigenvalue problems

被引:14
作者
Solov’ev S.I. [1 ]
机构
[1] Department of Computational Mathematics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan
基金
俄罗斯科学基金会;
关键词
curved finite element; eigenfunction; Eigenvalue; eigenvalue problem; finite element method; numerical integration; quadrature formula;
D O I
10.1134/S1995080217050341
中图分类号
学科分类号
摘要
A positive semi-definite eigenvalue problem for second-order self-adjoint elliptic differential operator definedon a bounded domain in the planewith smooth boundary and Dirichlet boundary condition is considered. This problem has a nondecreasing sequence of positive eigenvalues of finite multiplicity with a limit point at infinity. To the sequence of eigenvalues, there corresponds an orthonormal system of eigenfunctions. The original differential eigenvalue problem is approximated by the finite element method with numerical integration and Lagrange curved triangular finite elements of arbitrary order. Error estimates for approximate eigenvalues and eigenfunctions are established. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:856 / 863
页数:7
相关论文
共 50 条
[31]   A quadrature finite element method for semilinear second-order hyperbolic problems [J].
Mustapha, K. ;
Mustapha, H. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) :350-367
[32]   A new weak Galerkin finite element method for elliptic interface problems [J].
Mu, Lin ;
Wang, Junping ;
Ye, Xiu ;
Zhao, Shan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 :157-173
[33]   A conforming discontinuous Galerkin finite element method for elliptic interface problems [J].
Wang, Yue ;
Gao, Fuzheng ;
Cui, Jintao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
[34]   On the convergence of finite element method for second order elliptic interface problems [J].
Sinha, RK ;
Deka, B .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (01) :99-115
[35]   Supercloseness between the elliptic projection and the approximate eigenfunction and its application to a postprocessing of finite element eigenvalue problems [J].
Andreev, AB .
NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 :100-107
[36]   A Nonnested Augmented Subspace Method for Elliptic Eigenvalue Problems with Curved Interfaces [J].
Dang, Haikun ;
Xie, Hehu ;
Zhao, Gang ;
Zhou, Chenguang .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (02)
[37]   A Nonnested Augmented Subspace Method for Elliptic Eigenvalue Problems with Curved Interfaces [J].
Haikun Dang ;
Hehu Xie ;
Gang Zhao ;
Chenguang Zhou .
Journal of Scientific Computing, 2023, 94
[38]   Local and Parallel Finite Element Algorithms for Eigenvalue Problems [J].
Jinchao Xu .
Acta Mathematicae Applicatae Sinica(English Series), 2002, (02) :185-200
[39]   LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS [J].
Bi, Hai ;
Yang, Yidu ;
Li, Hao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2575-A2597
[40]   Local and parallel finite element algorithms for eigenvalue problems [J].
Xu J. ;
Zhou A. .
Acta Mathematicae Applicatae Sinica, 2002, 18 (2) :185-200