Quadrature finite element method for elliptic eigenvalue problems

被引:14
作者
Solov’ev S.I. [1 ]
机构
[1] Department of Computational Mathematics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan
基金
俄罗斯科学基金会;
关键词
curved finite element; eigenfunction; Eigenvalue; eigenvalue problem; finite element method; numerical integration; quadrature formula;
D O I
10.1134/S1995080217050341
中图分类号
学科分类号
摘要
A positive semi-definite eigenvalue problem for second-order self-adjoint elliptic differential operator definedon a bounded domain in the planewith smooth boundary and Dirichlet boundary condition is considered. This problem has a nondecreasing sequence of positive eigenvalues of finite multiplicity with a limit point at infinity. To the sequence of eigenvalues, there corresponds an orthonormal system of eigenfunctions. The original differential eigenvalue problem is approximated by the finite element method with numerical integration and Lagrange curved triangular finite elements of arbitrary order. Error estimates for approximate eigenvalues and eigenfunctions are established. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:856 / 863
页数:7
相关论文
共 50 条
[21]   Higher order stable generalized finite element method for the elliptic eigenvalue and source problems with an interface in 1D [J].
Deng, Quanling ;
Calo, Victor .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368 (368)
[22]   An Augmented Two-Scale Finite Element Method for Eigenvalue Problems [J].
Dai, Xiaoying ;
Du, Yunyun ;
Liu, Fang ;
Zhou, Aihui .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) :663-688
[23]   A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS [J].
Hong, Qichen ;
Xie, Hehu ;
Xu, Fei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A4208-A4235
[24]   A FINITE ELEMENT EIGENVALUE METHOD FOR SOLVING TRANSIENT HEAT CONDUCTION PROBLEMS [J].
Zhong, Jiakang ;
Chow, Louis C. ;
Chang, Won Soon .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 1992, 2 (01) :243-259
[25]   A DIFFERENTIAL QUADRATURE FINITE ELEMENT METHOD [J].
Xing, Yufeng ;
Liu, Bo ;
Liu, Guang .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (01) :207-227
[26]   A Penalized Crouzeix-Raviart Element Method for Second Order Elliptic Eigenvalue Problems [J].
Hu, Jun ;
Ma, Limin .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) :1457-1479
[27]   A finite element method for elliptic eigenvalue problems in a multi-component domain in 2D with non-local Dirichlet transition conditions [J].
De Schepper, H ;
Van Keer, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) :253-265
[28]   TWO-GRID FINITE ELEMENT DISCRETIZATION SCHEMES BASED ON SHIFTED-INVERSE POWER METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS [J].
Yang, Yidu ;
Bi, Hai .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1602-1624
[29]   A quadrature finite element method for semilinear second-order hyperbolic problems [J].
Mustapha, K. ;
Mustapha, H. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) :350-367
[30]   The Weak Galerkin Method for Elliptic Eigenvalue Problems [J].
Zhai, Qilong ;
Xie, Hehu ;
Zhang, Ran ;
Zhang, Zhimin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) :160-191