The Number Theoretic Omega Function and Summations Involving the Exponents of Prime Numbers in the Factorization of Factorials

被引:0
|
作者
Mehdi Hassani
Mahmoud Marie
机构
[1] University of Zanjan,Department of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Legendre’s theorem; Factorial; Prime number; Number theoretic Omega function; Growth of arithmetic functions; 11B65; 11A41; 11A51; 11N56;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the balancing of prime factors and their exponents in the standard factorization of n! into primes. We obtain explicit approximation for the sums ∑p⩽x(n)υp(n!)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p\leqslant x(n)}\upsilon _p(n!)$$\end{document} and ∑p⩽x(n)υp(n!)logp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p\leqslant x(n)}\upsilon _p(n!)\log p$$\end{document} for each boundary function x(n) with 2⩽x(n)⩽n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\leqslant x(n)\leqslant n$$\end{document}. Also, we estimate sums involving the exponents of prime factors in the factorization of factorials, and conclude that the sum of exponents of primes not exceeding elogn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {e}^{\sqrt{\log n}}$$\end{document} is asymptotic to the sum of the exponents of other primes in the factorization of n! into primes, as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. It is also shown that the product of primes not exceeding n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document} with their multiplicity is asymptotic to the product of other primes in the factorization of n! with their multiplicity, in logarithmic scale.
引用
收藏
页码:3501 / 3533
页数:32
相关论文
共 13 条