Construction of mutually unbiased bases in Cd⊗C2ld′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'}$$\end{document}

被引:0
作者
Jun Zhang
Yuan-Hong Tao
Hua Nan
Shao-Ming Fei
机构
[1] Yanbian University,Department of Mathematics, College of Sciences
[2] Capital Normal University,School of Mathematical Sciences
关键词
Mutually unbiased bases; Maximally entangled states ; Unextendible maximally entangled basis;
D O I
10.1007/s11128-015-0961-9
中图分类号
学科分类号
摘要
We study mutually unbiased bases in Cd⊗C2ld′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'}$$\end{document}. A systematic way of constructing mutually unbiased maximally entangled bases (MUMEBs) in Cd⊗C2ld′(l∈Z+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'} (l\in {\mathbb {Z}}^{+})$$\end{document} from MUMEBs in Cd⊗Cd′(d′=kd,k∈Z+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d \otimes {\mathbb {C}}^{d'}(d'=kd, k\in {\mathbb {Z}}^+)$$\end{document} and a general approach to construct mutually unbiased unextendible maximally entangled bases (MUUMEBs) in Cd⊗C2ld′(l∈Z+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^ld'} (l \in {\mathbb {Z}}^{+})$$\end{document} from MUUMEBs in Cd⊗Cd′(d′=kd+r,0<r<d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d \otimes {\mathbb {C}}^{d'}(d'=kd+r, 0<r<d)$$\end{document} have been presented. Detailed examples are given.
引用
收藏
页码:2635 / 2644
页数:9
相关论文
共 76 条
[1]  
Ivanović ID(1981)Geometrical description of quantal state determination J. Phys. A 14 3241-320
[2]  
Durt T(2010)On mutually unbiased bases Int. J. Quantum Inf. 8 535-516
[3]  
Englert B-G(2004)Quantum systems with finite Hilbert space Rep. Prog. Phys. 67 267-576
[4]  
Bengtsson I(2008)The discrete Wigner function Prog. Opt. 51 469-333
[5]  
Życzkowski K(2005)Security bound of two-basis quantum-key-distribution protocols using qudits Phys. Rev. A 72 032320-0820
[6]  
Vourdas A(2013)Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases Phys. Rev. A 88 032305-undefined
[7]  
Bjork G(2010)Optimal bounds for parity-oblivious random access codes Phys. Rev. A 81 042326-undefined
[8]  
Klimov AB(1989)Optimal state-determination by mutually unbiased measurements Ann. Phys. 191 363-undefined
[9]  
Sanchez-Soto LL(2011)Quantum process reconstruction based on mutually unbiased basis Phys. Rev. A 83 052332-undefined
[10]  
Nikolopoulos GM(2013)Increasing the security of the ping-pong protocol by using many mutually unbiased bases Quantum Inf. Process. 12 569-undefined