Low-dimensional quantum gases in curved geometries

被引:0
作者
Andrea Tononi
Luca Salasnich
机构
[1] Université Paris-Saclay,Dipartimento di Fisica e Astronomia ‘Galileo Galilei’
[2] CNRS,undefined
[3] LPTMS,undefined
[4] Università di Padova,undefined
[5] Padua Quantum Technologies Research Center,undefined
[6] Università di Padova,undefined
[7] INFN — Sezione di Padova,undefined
[8] CNR-INO,undefined
来源
Nature Reviews Physics | 2023年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Atomic gases confined in curved geometries are characterized by distinctive features that are absent in their flat counterparts, such as periodic boundaries, local curvature and nontrivial topologies. The recent experiments with shell-shaped quantum gases and the study of ring-shaped superfluids point out that the manifold of a quantum gas could soon become a controllable feature, thus enabling the fundamental study of curved many-body quantum systems. In this Perspective article, we review the main geometries realized in the experiments, analysing the theoretical and experimental status on their phase transitions and on the superfluid dynamics. As our outlook, we delineate the study of vortices, the few-body physics and the search for analogue models in various curved geometries as the most promising research areas.
引用
收藏
页码:398 / 406
页数:8
相关论文
共 302 条
  • [1] Turner AM(2010)Vortices on curved surfaces Rev. Mod. Phys. 82 1301-563
  • [2] Vitelli V(2016)Magnetism in curved geometries J. Phys. D Appl. Phys. 49 363001-286
  • [3] Nelson DR(2022)Electronic materials with nanoscale curved geometries Nat. Electron. 5 551-1341
  • [4] Streubel R(2022)Observation of ultracold atomic bubbles in orbital microgravity Nature 606 281-357
  • [5] Gentile P(2022)Expansion dynamics of a shell-shaped Bose–Einstein condensate Phys. Rev. Lett. 129 243402-197
  • [6] Carollo RA(2022)Colloquium: atomtronic circuits: from many-body physics to quantum technologies Rev. Mod. Phys. 94 041001-203
  • [7] Jia F(2021)Quantum gases in optical boxes Nat. Phys. 17 1334-209
  • [8] Amico L(1999)Theory of Bose–Einstein condensation in trapped gases Rev. Mod. Phys. 71 463-1543
  • [9] Navon N(2019)Bose–Einstein condensation on the surface of a sphere Phys. Rev. Lett. 123 160403-1038
  • [10] Smith RP(2022)Topological superfluid transition in bubble-trapped condensates Phys. Rev. Res. 4 013122-194