Measure of the exponential splitting of the homoclinic tangle in four-dimensional symplectic mappings

被引:0
作者
Elena Lega
Massimiliano Guzzo
Claude Froeschlé
机构
[1] Observatoire de Nice,Dipartimento di Matematica Pura ed Applicata
[2] Bv. de l’Observatoire,undefined
[3] Università degli Studi di Padova,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2009年 / 104卷
关键词
Hamiltonian systems; Separatrix splitting; Numerical computations; Nekhoroshev theorem; Arnold diffusion; Symplectic maps;
D O I
暂无
中图分类号
学科分类号
摘要
Using four-dimensional symplectic maps as a model problem, we numerically compute the unstable manifolds of the hyperbolic manifolds of the phase space related to the single resonances. We measure an exponential dependence of the size of the lobes of these manifolds through many orders of magnitude of the perturbing parameter. This is an indirect numerical verification of the exponential decay of the normal form, as predicted by the Nekhoroshev theorem. The variation of the size of the lobes turns out to be correlated to the diffusion coefficient.
引用
收藏
页码:191 / 204
页数:13
相关论文
共 63 条
[1]  
Arnold V.I.(1963)Small denominators and problems of stability of motion in classical and celestial mechanics Russ. Math. Surveys 18 85-191
[2]  
Arnold V.I.(1964)Instability of dynamical systems with several degrees of freedom Sov. Math. Dokl. 6 581-585
[3]  
Berti M.(2002)Fast Arnold’s diffusion in systems with three time scales Discrete Contin. Dyn. Syst. Ser. A 8 795-811
[4]  
Bolle P.(2003)Drift in phase space: a new variational mechanism with optimal diffusion time Journal de mathématiques pures et appliquées. 82 613-664
[5]  
Berti M.(1996)An approach to Arnold diffusion through the calculus of variations Nonlinear Anal. 26 1115-1135
[6]  
Biasco L.(1997)Arnold’s examples with three rotators Nonlinearity 10 763-781
[7]  
Bolle P.(2001)Upper bounds on Arnold diffusion time via mather theory J. Math. Pures Appl. 80 105-129
[8]  
Bessi U.(2006)KAM stability for a three-body problem of the solar system Z. Angew. Math. Phys. 57 33-41
[9]  
Bessi U.(2007)KAM stability and celestial mechanics Mem. Amer. Math. Soc. 187 878-68
[10]  
Bessi U.(2008)On the connection between the Nekhoroshev theorem and Arnold Diffusion Celestial Mech. Dynam. Astronom. 102 49-189