D’Alembert’s Functional Equations on Monoids with an Anti-endomorphism

被引:0
作者
Mohamed Ayoubi
Driss Zeglami
机构
[1] E.N.S.A.M Moulay Ismaïl University,Department of Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
Functional equation; d’Alembert; Kannappan; monoid; involution; multiplicative function; anti-homomorphism; irreducible representation; Primary 39B32; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a topological monoid. Our main goal is to introduce the functional equation g(xy)+μ(y)g(xψ(y))=2g(x)g(y),x,y∈M,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} g(xy)+\mu (y)g(x\psi (y))=2g(x)g(y),\ \ x,y\in M, \end{aligned}$$\end{document}where ψ:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :M\rightarrow M$$\end{document} is a continuous anti-endomorphism that need not be involutive and μ:M→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu :M\rightarrow \mathbb {C}$$\end{document} is a continuous multiplicative function such that μ(xψ(x))=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (x\psi (x))=1$$\end{document} for all x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in M$$\end{document}. We exploit results on the pre-d’Alembert functional equation by Davison (Publ Math Debrecen 75(1–2):41–66, 2009) and Stetkær (Functional equations on groups. World Scientific Publishing Company, Singapore (2013)) to prove that the continuous solutions g:M→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ g:M\rightarrow \mathbb {C}$$\end{document} of this equation can be expressed in terms of multiplicative functions and characters of 2-dimensional representations of M. Interesting consequences of this result are presented.
引用
收藏
相关论文
共 30 条
[1]  
Akkouchi M(1998)A class of functional equations on a locally compact group J. Lond. Math. Soc. (2) 57 694-705
[2]  
Bakali A(2009)D’Alembert’s functional equation on topological monoids Publ. Math. Debrecen 75 41-66
[3]  
Khalil I(2015)On Wilson’s functional equations Aequationes Math. 89 339-354
[4]  
Davison TMK(2015)d’Alembert’s other functional equation Publ. Math. Debrecen 87 319-349
[5]  
Ebanks BR(2016)Functional equations on semigroups with an endomorphism Acta Math. Hungar. 150 363-371
[6]  
Stetkær H(2018)An integral functional equation on groups under two measures Proyecciones J. Math. 37 565-581
[7]  
Ebanks BR(1968)The functional equation Proc. Am. Math. Soc. 19 69-74
[8]  
Stetkær H(1968) for groups Can. Math. Bull. 2 495-498
[9]  
Fadli B(1997)A functional equation for the cosine Aequationes Math. 54 144-172
[10]  
Kabbaj S(2004)Functional equations on abelian groups with involution Aequationes Math. 67 241-262