Normal edge-transitive Cayley graphs of Frobenius groups

被引:0
作者
Brian P. Corr
Cheryl E. Praeger
机构
[1] The University of Western Australia,Centre for the Mathematics of Symmetry and Computation
[2] Universidade Federal de Minas Gerais,undefined
[3] King Abdulazziz University,undefined
来源
Journal of Algebraic Combinatorics | 2015年 / 42卷
关键词
Cayley graphs; Group theory; Algebraic graph theory; Frobenius groups;
D O I
暂无
中图分类号
学科分类号
摘要
A Cayley graph for a group G is called normal edge-transitive if it admits an edge-transitive action of some subgroup of the holomorph of G [the normaliser of a regular copy of G in Sym(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Sym}}}(G)$$\end{document}]. We complete the classification of normal edge-transitive Cayley graphs of order a product of two primes by dealing with Cayley graphs for Frobenius groups of such orders. We determine the automorphism groups of these graphs, proving in particular that there is a unique vertex-primitive example, namely the flag graph of the Fano plane.
引用
收藏
页码:803 / 827
页数:24
相关论文
共 6 条
[1]  
Praeger CE(1999)Finite normal edge-transitive Cayley graphs Bull. Aust. Math. Soc. 60 207-220
[2]  
Darafsheh MR(2013)Normal edge-transitive Cayley graphs on non-abelian groups of order Sci. China Math. 56 213-219
[3]  
Assari A(1971), where Trans. Am. Math. Soc. 158 247-256
[4]  
Chao CY(1993) is a prime number J. Comb. Theory Ser. B 59 245-266
[5]  
Praeger CE(undefined)On the classification of symmetric graphs with a prime number of vertices undefined undefined undefined-undefined
[6]  
Xu MY(undefined)Vertex-primitive graphs of order a product of two distinct primes undefined undefined undefined-undefined