Angular distributions for multi-body semileptonic charmed baryon decays

被引:0
|
作者
Fei Huang
Qi-An Zhang
机构
[1] Shanghai Jiao Tong University,INPAC, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy
[2] Beihang University,School of Physics
[3] Shanghai Jiao Tong University,Tsung
来源
The European Physical Journal C | 2022年 / 82卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We perform an analysis of angular distributions in semileptonic decays of charmed baryons B1(′)→B2(′)(→B3(′)B4(′))ℓ+νℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1^{(\prime )}\rightarrow B_2^{(\prime )}(\rightarrow B_3^{(\prime )}B_4^{(\prime )})\ell ^+\nu _{\ell }$$\end{document}, where the B1=(Λc+,Ξc(0,+))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1{=}(\Lambda _c^+,\Xi _c^{(0,+)})$$\end{document} are the SU(3)-antitriplet baryons and B1′=Ωc-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1'{=}\Omega _c^-$$\end{document} is an SU(3) sextet. We will firstly derive analytic expressions for angular distributions using the helicity amplitude technique. Based on the lattice quantum chromodynamics (QCD) results for Λc+→Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _c^+\rightarrow \Lambda $$\end{document} and Ξc0→Ξ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi _c^0\rightarrow \Xi ^-$$\end{document} form factors and model calculation of the Ωc0→Ω-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _c^0\rightarrow \Omega ^-$$\end{document} transition, we predict the branching fractions: B(Λc+→Λ(→pπ-)e+νe)=2.48(15)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Lambda _{c}^{+} \rightarrow \Lambda (\rightarrow p \pi ^{-}) e^{+} \nu _{e})=2.48(15)\%$$\end{document}, B(Λc+→Λ(→pπ-)μ+νμ)=2.50(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Lambda _{c}^+\rightarrow \Lambda (\rightarrow p \pi ^{-})\mu ^{+}\nu _{\mu })=2.50(14)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)e+νe)=2.40(30)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})e^{+}\nu _{e})=2.40(30)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)μ+νν)=2.41(30)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})\mu ^{+}\nu _{\nu })=2.41(30)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)e+νe)=0.362(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-(\rightarrow \Lambda K^{-})e^{+}\nu _{e})=\!0.362(14)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)μ+νν)=0.350(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-\!(\rightarrow \Lambda K^{-})\mu ^{+\!}\nu _{\nu })=0.350(14)\%$$\end{document}. We also predict the q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2$$\end{document} dependence and angular distributions of these processes, in particular the coefficients for the cosnθℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\theta _{\ell }$$\end{document} (cosnθh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\theta _{h}$$\end{document}, cosnϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\phi $$\end{document}) (n=0,1,2,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=0, 1, 2, \ldots )$$\end{document} terms. This work can provide a theoretical basis for the ongoing experiments at BESIII, LHCb, and BELLE-II.
引用
收藏
相关论文
共 50 条
  • [21] Semileptonic B decays into higher charmed resonances
    Veseli, S
    Olsson, MG
    PHYSICAL REVIEW D, 1996, 54 (01): : 886 - 895
  • [22] Effective model for charmed meson semileptonic decays
    Bajc, B
    Fajfer, S
    Oakes, RJ
    PHYSICAL REVIEW D, 1996, 53 (09): : 4957 - 4963
  • [23] Semileptonic B decays to excited charmed mesons
    Leibovich, A. K.
    Ligeti, Z.
    Stewart, I. W.
    Wise, M. B.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 57 (01):
  • [24] Radiative corrections in baryon semileptonic decays with the emission of a polarized baryon
    Juarez-Leon, C.
    Martinez, A.
    Neri, M.
    Torres, J. J.
    Flores-Mendieta, R.
    FIRST CINVESTAV-UNAM SYMPOSIUM ON HIGH ENERGY PHYSICS: DEDICATED TO THE MEMORY OF AGUSTO GARCIA, 2010, 1259 : 109 - +
  • [25] Up-down asymmetries of charmed baryon three-body decays
    Jian-Yong Cen
    Chao-Qiang Geng
    Chia-Wei Liu
    Tien-Hsueh Tsai
    The European Physical Journal C, 2019, 79
  • [26] A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry
    H.J. Zhao
    Yan-Li Wang
    Y.K. Hsiao
    Yao Yu
    Journal of High Energy Physics, 2020
  • [27] Three-body charmed baryon decays with SU(3) flavor symmetry
    Geng, C. Q.
    Hsiao, Y. K.
    Liu, Chia-Wei
    Tsai, Tien-Hsueh
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [28] Nonleptonic three-body charmed baryon weak decays with H(15)
    Geng, Chao-Qiang
    Liu, Chia -Wei
    Liu, Sheng-Lin
    PHYSICAL REVIEW D, 2024, 109 (09)
  • [29] Up-down asymmetries of charmed baryon three-body decays
    Cen, Jian-Yong
    Geng, Chao-Qiang
    Liu, Chia-Wei
    Tsai, Tien-Hsueh
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (11):
  • [30] A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry
    Zhao, H. J.
    Wang, Yan-Li
    Hsiao, Y. K.
    Yu, Yao
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)