We perform an analysis of angular distributions in semileptonic decays of charmed baryons B1(′)→B2(′)(→B3(′)B4(′))ℓ+νℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_1^{(\prime )}\rightarrow B_2^{(\prime )}(\rightarrow B_3^{(\prime )}B_4^{(\prime )})\ell ^+\nu _{\ell }$$\end{document}, where the B1=(Λc+,Ξc(0,+))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_1{=}(\Lambda _c^+,\Xi _c^{(0,+)})$$\end{document} are the SU(3)-antitriplet baryons and B1′=Ωc-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_1'{=}\Omega _c^-$$\end{document} is an SU(3) sextet. We will firstly derive analytic expressions for angular distributions using the helicity amplitude technique. Based on the lattice quantum chromodynamics (QCD) results for Λc+→Λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda _c^+\rightarrow \Lambda $$\end{document} and Ξc0→Ξ-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Xi _c^0\rightarrow \Xi ^-$$\end{document} form factors and model calculation of the Ωc0→Ω-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega _c^0\rightarrow \Omega ^-$$\end{document} transition, we predict the branching fractions: B(Λc+→Λ(→pπ-)e+νe)=2.48(15)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Lambda _{c}^{+} \rightarrow \Lambda (\rightarrow p \pi ^{-}) e^{+} \nu _{e})=2.48(15)\%$$\end{document}, B(Λc+→Λ(→pπ-)μ+νμ)=2.50(14)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Lambda _{c}^+\rightarrow \Lambda (\rightarrow p \pi ^{-})\mu ^{+}\nu _{\mu })=2.50(14)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)e+νe)=2.40(30)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})e^{+}\nu _{e})=2.40(30)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)μ+νν)=2.41(30)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})\mu ^{+}\nu _{\nu })=2.41(30)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)e+νe)=0.362(14)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-(\rightarrow \Lambda K^{-})e^{+}\nu _{e})=\!0.362(14)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)μ+νν)=0.350(14)%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-\!(\rightarrow \Lambda K^{-})\mu ^{+\!}\nu _{\nu })=0.350(14)\%$$\end{document}. We also predict the q2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q^2$$\end{document} dependence and angular distributions of these processes, in particular the coefficients for the cosnθℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cos n\theta _{\ell }$$\end{document} (cosnθh\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cos n\theta _{h}$$\end{document}, cosnϕ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cos n\phi $$\end{document}) (n=0,1,2,…)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n=0, 1, 2, \ldots )$$\end{document} terms. This work can provide a theoretical basis for the ongoing experiments at BESIII, LHCb, and BELLE-II.