Angular distributions for multi-body semileptonic charmed baryon decays

被引:0
|
作者
Fei Huang
Qi-An Zhang
机构
[1] Shanghai Jiao Tong University,INPAC, Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy
[2] Beihang University,School of Physics
[3] Shanghai Jiao Tong University,Tsung
来源
The European Physical Journal C | 2022年 / 82卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We perform an analysis of angular distributions in semileptonic decays of charmed baryons B1(′)→B2(′)(→B3(′)B4(′))ℓ+νℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1^{(\prime )}\rightarrow B_2^{(\prime )}(\rightarrow B_3^{(\prime )}B_4^{(\prime )})\ell ^+\nu _{\ell }$$\end{document}, where the B1=(Λc+,Ξc(0,+))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1{=}(\Lambda _c^+,\Xi _c^{(0,+)})$$\end{document} are the SU(3)-antitriplet baryons and B1′=Ωc-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1'{=}\Omega _c^-$$\end{document} is an SU(3) sextet. We will firstly derive analytic expressions for angular distributions using the helicity amplitude technique. Based on the lattice quantum chromodynamics (QCD) results for Λc+→Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _c^+\rightarrow \Lambda $$\end{document} and Ξc0→Ξ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi _c^0\rightarrow \Xi ^-$$\end{document} form factors and model calculation of the Ωc0→Ω-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _c^0\rightarrow \Omega ^-$$\end{document} transition, we predict the branching fractions: B(Λc+→Λ(→pπ-)e+νe)=2.48(15)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Lambda _{c}^{+} \rightarrow \Lambda (\rightarrow p \pi ^{-}) e^{+} \nu _{e})=2.48(15)\%$$\end{document}, B(Λc+→Λ(→pπ-)μ+νμ)=2.50(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Lambda _{c}^+\rightarrow \Lambda (\rightarrow p \pi ^{-})\mu ^{+}\nu _{\mu })=2.50(14)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)e+νe)=2.40(30)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})e^{+}\nu _{e})=2.40(30)\%$$\end{document}, B(Ξc0→Ξ-(→Λπ-)μ+νν)=2.41(30)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Xi _{c}^0\rightarrow \Xi ^-(\rightarrow \Lambda \pi ^{-})\mu ^{+}\nu _{\nu })=2.41(30)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)e+νe)=0.362(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-(\rightarrow \Lambda K^{-})e^{+}\nu _{e})=\!0.362(14)\%$$\end{document}, B(Ωc0→Ω-(→ΛK-)μ+νν)=0.350(14)%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(\Omega _{c}^0\rightarrow \Omega ^-\!(\rightarrow \Lambda K^{-})\mu ^{+\!}\nu _{\nu })=0.350(14)\%$$\end{document}. We also predict the q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2$$\end{document} dependence and angular distributions of these processes, in particular the coefficients for the cosnθℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\theta _{\ell }$$\end{document} (cosnθh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\theta _{h}$$\end{document}, cosnϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cos n\phi $$\end{document}) (n=0,1,2,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n=0, 1, 2, \ldots )$$\end{document} terms. This work can provide a theoretical basis for the ongoing experiments at BESIII, LHCb, and BELLE-II.
引用
收藏
相关论文
共 50 条
  • [1] Angular distributions for multi-body semileptonic charmed baryon decays
    Huang, Fei
    Qi-An Zhang
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01):
  • [2] ANGULAR-DISTRIBUTIONS IN SEMILEPTONIC TAU DECAYS
    KUHN, JH
    MIRKES, E
    PHYSICS LETTERS B, 1992, 286 (3-4) : 381 - 386
  • [3] SEMILEPTONIC DECAYS OF CHARMED BARYONS
    GARCIA, A
    HUERTA, R
    PHYSICAL REVIEW D, 1992, 45 (09): : 3266 - 3267
  • [4] SEMILEPTONIC DECAYS OF CHARMED PARTICLES
    NABAVI, RP
    PHAM, XY
    COTTINGHAM, WN
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1977, 3 (11) : 1485 - 1495
  • [5] Charmed baryon and semileptonic physics at FOCUS
    O'Reilly, B
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 75B : 20 - 23
  • [6] SEMILEPTONIC DECAYS OF THE CHARMED BARYON LAMBDA-C+ IN THE PHENOMENOLOGICAL CHIRAL LAGRANGIAN METHOD
    KALINOVSKY, YL
    SARIKOV, NA
    TAKHTAMYSHEV, GG
    PHYSICS LETTERS B, 1986, 181 (3-4) : 359 - 361
  • [7] Nonleptonic two-body charmed meson decays in an effective model for their semileptonic decays
    Bajc, B
    Fajfer, S
    Oakes, RJ
    Prelovsek, S
    PHYSICAL REVIEW D, 1997, 56 (11): : 7207 - 7215
  • [8] Charmed baryon decays at BESIII
    Lyu, Xiao-Rui
    10TH INTERNATIONAL WORKSHOP ON CHARM PHYSICS, 2021,
  • [9] CHARMED-BARYON DECAYS
    KARLSEN, RE
    SCADRON, MD
    EUROPHYSICS LETTERS, 1991, 14 (04): : 319 - 322
  • [10] MULTIHADRON SEMILEPTONIC DECAYS OF CHARMED MESONS
    BARGER, V
    GOTTSCHALK, T
    PHILLIPS, RJN
    PHYSICAL REVIEW D, 1977, 16 (03): : 746 - 771