The Time Optimal Control of Two Dimensional Convective Brinkman–Forchheimer Equations

被引:0
作者
Manil T. Mohan
机构
[1] Indian Institute of Technology Roorkee-IIT Roorkee,Department of Mathematics
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Convective Brinkman–Forchheimer equations; Pontryagin’s maximum principle; Porus medium; Time optimal control; 49J20; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we discuss the time optimal control of two dimensional convective Brinkman–Forchheimer (2D CBF) equations, which describe the motion of incompressible viscous fluid through a rigid, homogeneous, isotropic, porous medium. We establish Pontryagin’s maximum principle for the time optimal control of the 2D CBF equations.
引用
收藏
页码:3295 / 3338
页数:43
相关论文
共 58 条
[11]  
Sritharan SS(1992)Existence of optimal controls for viscous flow problems Proc. R. Soc. Lond. A 439 81-102
[12]  
Barbu V(1994)Necessary and sufficient conditions for optimal controls in viscous flow problems Proc. R. Soc. Edinb. A 124 211-251
[13]  
Sritharan SS(1995)Optimal chattering controls for viscous flow Nonlinear Anal. Theory Methods Appl. 25 763-797
[14]  
Chen M(1977)An J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 685-700
[15]  
Fattorini HO(1980)-theorem of the Helmholtz decomposition of vector fields Dokl. Akad. Nauk SSSR 252 1066-1070
[16]  
Fattorini HO(1981)On some control problems and results related to the unique solution of mixed problems by the three-dimensional Navier-Stokes and Euler equations Math. Sbornik 117 323-349
[17]  
Sritharan SS(2017)Properties of solutions of certain extremum problems related to the Navier-Stokes and Euler equations J. Differ. Equ. 263 7141-7161
[18]  
Fattorini HO(2012)Energy equality for the 3D critical convective Brinkman-Forchheimer equations Commun. Pure Appl. Anal. 11 2037-2054
[19]  
Sritharan SS(2016)Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities Discrete Contin. Dyn. Syst. 36 279-302
[20]  
Fattorini HO(2014)Bang-bang property of time optimal controls of semilinear parabolic equation Discrete Contin. Dyn. Syst. 34 3611-3637