The Time Optimal Control of Two Dimensional Convective Brinkman–Forchheimer Equations

被引:0
作者
Manil T. Mohan
机构
[1] Indian Institute of Technology Roorkee-IIT Roorkee,Department of Mathematics
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Convective Brinkman–Forchheimer equations; Pontryagin’s maximum principle; Porus medium; Time optimal control; 49J20; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we discuss the time optimal control of two dimensional convective Brinkman–Forchheimer (2D CBF) equations, which describe the motion of incompressible viscous fluid through a rigid, homogeneous, isotropic, porous medium. We establish Pontryagin’s maximum principle for the time optimal control of the 2D CBF equations.
引用
收藏
页码:3295 / 3338
页数:43
相关论文
共 58 条
[1]  
Abergel F(1990)On some control problems in fluid mechanics Theoret. Comput. Fluid Dyn. 1 303-325
[2]  
Temam R(2019)Time optimal control of the unsteady 3D Navier-Stokes-Voigt equations Appl. Math. Optim. 79 397-426
[3]  
Anh CT(2010)The Navier-Stokes problem modified by an absorption term Appl. Anal. 89 1805-1825
[4]  
Nguyet TM(1984)The time optimal control problem for parabolic variational inequalities Appl. Math. Optim. 11 1-22
[5]  
Antontsev SN(1998)Optimal control of Navier-Stokes equations with periodic inputs Nonlinear Anal. Theory Methods Appl. 31 15-31
[6]  
de Oliveira HB(1997)The time optimal control of Navier-Stokes equations Syst. Control Lett. 30 93-100
[7]  
Barbu V(1998)-control theory of fluid dynamics Proc. R. Soc. Lond. A 454 3009-3033
[8]  
Barbu V(2001)Flow invariance preserving feedback controllers for the Navier-Stokes equation J. Math. Anal. Appl. 255 281-307
[9]  
Barbu V(2017)Bang-bang property for time optimal control of the Korteweg-de Vries-Burgers equation Appl. Math. Optim. 76 399-414
[10]  
Barbu V(1987)A unified theory of necessary conditions for nonlinear nonconvex control systems Appl. Math. Optim. 15 141-185