Characterization of interactions’ persistence in time-varying networks

被引:0
作者
Francisco Bauzá Mingueza
Mario Floría
Jesús Gómez-Gardeñes
Alex Arenas
Alessio Cardillo
机构
[1] University of Zaragoza,Department of Theoretical Physics
[2] University Rovira i Virgili,Department of Computer Science and Mathematics
[3] University of Zaragoza,GOTHAM Lab, Institute for Biocomputation and Physics of Complex Systems (BIFI)
[4] University of Zaragoza,Department of Condensed Matter Physics
[5] Open University of Catalonia,Internet Interdisciplinary Institute (IN3)
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Many complex networked systems exhibit volatile dynamic interactions among their vertices, whose order and persistence reverberate on the outcome of dynamical processes taking place on them. To quantify and characterize the similarity of the snapshots of a time-varying network—a proxy for the persistence,—we present a study on the persistence of the interactions based on a descriptor named temporality. We use the average value of the temporality, T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {T}}$$\end{document}, to assess how “special” is a given time-varying network within the configuration space of ordered sequences of snapshots. We analyse the temporality of several empirical networks and find that empirical sequences are much more similar than their randomized counterparts. We study also the effects on T¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {T}}$$\end{document} induced by the (time) resolution at which interactions take place.
引用
收藏
相关论文
共 132 条
[1]  
Boccaletti S(2006)Complex networks: Structure and dynamics Phys. Rep. 424 175-308
[2]  
Latora V(2012)The network takeover Nat. Phys. 8 14-16
[3]  
Moreno Y(2017)Random graph models for dynamic networks Eur. Phys. J. B 90 200-125
[4]  
Chavez M(2012)Temporal networks Phys. Rep. 519 97-81
[5]  
Hwang D(2015)Benchmark model to assess community structure in evolving networks Phys. Rev. E 92 012805-916
[6]  
Barabási A-L(2006)Epidemic dynamics on an adaptive network Phys. Rev. Lett. 96 208701-56
[7]  
Zhang X(2013)Temporal networks: Slowing down diffusion by long lasting interactions Phys. Rev. Lett. 111 188701-8
[8]  
Moore C(2014)Controlling contagion processes in activity driven networks Phys. Rev. Lett. 112 118702-1076
[9]  
Newman MEJ(2012)Random walks and search in time-varying networks Phys. Rev. Lett. 109 238701-830
[10]  
Holme P(2018)Desynchronization induced by time-varying network Europhys. Lett. 121 50008-71