Note on the class numbers of certain real quadratic fields

被引:0
作者
Humio Ichimura
机构
[1] Yokohama City University,Department of Mathematics
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2003年 / 73卷
关键词
Prime Number; Prime Ideal; Class Number; Rational Part; Principal Ideal;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the class number of the real quadratic field\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{Q}}\left( {\sqrt {a^{2n} + 4} } \right)$$ \end{document} is divisible byn forany integern ≥ 2 andany odd integera ≥ 3.
引用
收藏
页码:281 / 288
页数:7
相关论文
共 5 条
[1]  
Gross B. H.(1978)Some results on the Mordell-Weil group of the Jacobian of the Fermat curve Invent. Math. 44 201-224
[2]  
Rohrlich D. E.(1985)A note on quadratic fields in which a fixed prime number splits completely Nagoya Math. J. 99 63-71
[3]  
Ichimura H.(1999)A note on quadratic fields in which a fixed prime number splits completely, III Proc. Japan Acad. 75A 176-177
[4]  
Ichimura H.(1973)Real quadratic fields with class number divisible by J. Number Theory 5 237-241
[5]  
Weinberger P. J.(undefined)undefined undefined undefined undefined-undefined