Volumetric, Viscometric and Spectroscopic Properties of Glycylglycine in Citrate and Acetate Buffer Solutions at Different Temperatures

被引:0
作者
Poonam Patyar
Gurpreet Kaur
机构
[1] Punjabi University,Department of Chemistry
来源
Journal of Solution Chemistry | 2022年 / 51卷
关键词
Acetate buffer; Citrate buffer; Glycylglycine; Thermodynamic parameters; Free energy of activation;
D O I
暂无
中图分类号
学科分类号
摘要
Interactions of proteins with the surrounding solvent play an important role in their conformational stability and unfolding behavior of globular proteins. In order to understand various interactions (H-bonding and electrostatic interactions etc.) between the protein molecules and the solvent, densities ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\rho \right)$$\end{document} and viscosities η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\eta \right)$$\end{document} of glycylglycine in water, in aqueous tri-sodium citrate buffer and in aqueous sodium acetate buffer solutions of pH 7.40 were determined at different temperatures, T = (288.15 to 328.15) K and at atmospheric pressure. These data have been used to calculate partial molar volumes ϕvo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\phi }_{v}^{\mathrm{o}}\right)$$\end{document} and relative viscosities ηr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\eta }_{r}\right)$$\end{document}. Positive values of ϕvo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi }_{v}^{\mathrm{o}}$$\end{document} and viscosity B-coefficients indicate the presence of strong solute–solvent interactions among the system. Positive transfer volumes show the dominance of ion–dipolar interactions. Further, interaction coefficients, partial molar expansibilities, their second order derivatives, dB/dT and hydration numbers were also calculated. The free energy of activation of viscous flow, Δμ1o#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\Delta \mu }_{1}^{\mathrm{o}\#}\right)$$\end{document} and Δμ2o#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\Delta \mu }_{2}^{\mathrm{o}\#}\right)$$\end{document} per mole of the solvent and solute were obtained by applying transition-state theory to viscosity B-coefficient data and the corresponding activation parameters, enthalpy ΔHo#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\Delta H}^{\mathrm{o}\#}\right)$$\end{document} and entropy ΔSo#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\Delta S}^{\mathrm{o}\#}\right)$$\end{document} were also determined. FTIR studies were also carried out for glycylglycine in aqueous and mixed aqueous solutions at pH 7.40 and at room temperature (i.e. T = 298.15 K). Overall, the results have been interpreted in-terms of various competitive interactions among these systems.
引用
收藏
页码:58 / 83
页数:25
相关论文
共 86 条
  • [1] Venkatesu P(2007)Densities of aqueous solutions containing model compounds of amino acids and ionic salts at J. Chem. Thermodyn. 39 1206-1216
  • [2] Lee MJ(2010) = 298.15 K J. Chem. Eng. Data 55 4864-4871
  • [3] Lin H(2008)Volumetric properties of some α, ω-aminocarboxylic acids in aqueous sodium acetate and magnesium acetate solution Chem. Rev. 108 1225-1244
  • [4] Banipal TS(2016)Principles of protein–protein interactions: What are the preferred ways for proteins to interact? J. Mol. Liq. 222 804-817
  • [5] Kahlon GK(2015)Volumetric behaviour of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures Phys. Chem. Chem. Phys. 17 1114-1133
  • [6] Kaur J(2004)Buffer more than buffering agent: Introducing a new class of stabilizers for the protein BSA J. Solution Chem. 33 1349-1366
  • [7] Singh K(2011)Dissociation constants of citric acid in NaCl and KCl solutions and their mixtures at 25 °C Results Pharm. Sci. 1 11-15
  • [8] Mehra V(2006)Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solutions Photochem. Photobiol. Sci. 5 680-685
  • [9] Chawla R(2019)Photolysis of formylmethylflavin in aqueous and organic solvents Sci. Adv. 5 1-8
  • [10] Banipal PK(2010)Mechano-thermal-chromic device with supersaturated salt hydrate crystal phase change Phys. Chem. Chem. Phys. 12 12840-12850