Nonlinear degenerate Navier problem involving the weighted biharmonic operator with measure data in weighted Sobolev spaces

被引:0
作者
Youssef Fadil
Mohamed El Ouaarabi
Chakir Allalou
Mohamed Oukessou
机构
[1] Sultan Moulay Slimane University,Laboratory LMACS, Faculty of Science and Technics
[2] Faculty of Sciences Aïn Chock,Fundamental and Applied Mathematics Laboratory
[3] Hassan II University,undefined
来源
Boletín de la Sociedad Matemática Mexicana | 2024年 / 30卷
关键词
Elliptic equations; Weighted biharmonic operator; Navier problem; Weighted Sobolev spaces; Weak solution; 35J15; 35J60; 35J66; 35J70; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form: Δ[ϕ(z)a(z,Δw)]-div[ϑ1(z)K(z,∇w)+ϑ2(z)L(z,w,∇w)]+ϑ2(z)L0(z,w,∇w)=h0-∑j=1nDjhj,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} \Delta \Big [\phi (z)a(z,\Delta w)\Big ]-\mathrm{{div}}\Big [ \vartheta _{1}(z)\mathcal {K}(z,\nabla w)+\vartheta _{2}(z)\mathcal {L}(z,w,\nabla w)\Big ] \\{} & {} \qquad +\vartheta _{2}(z)\mathcal {L}_{0}(z,w,\nabla w)=h_0-\sum \limits _{j=1}^{n} D_{j}h_{j} \;, \end{aligned}$$\end{document}where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, ϑ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _1$$\end{document} and ϑ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _2$$\end{document} are weight functions, a:D¯×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a:\overline{\mathcal {D}}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, K:D×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}:\mathcal {D}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, L:D×R×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, and L0:D×R×Rn⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_0:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}$$\end{document} are Carathéodory applications that verified some conditions, and h0∈L1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_0\in L^1(\mathcal {D})~$$\end{document} and hj∈Lp′(D,ϑ11-p′)(j=1,…,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_j\in L^{p'}(\mathcal {D},\vartheta _{1}^{1-p'})(j=1,\ldots ,n)$$\end{document}.
引用
收藏
相关论文
共 50 条
[41]   The Cauchy problem for dissipative Benjamin-Ono equation in weighted Sobolev spaces [J].
Cunha, Alysson .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
[42]   The Dirichlet problem for elliptic equations in weighted Sobolev spaces on unbounded domains of the plane [J].
Boccia, Serena ;
Salvato, Maria ;
Transirico, Maria .
MATHEMATICA SLOVACA, 2013, 63 (06) :1321-1332
[43]   EXISTENCE AND UNIQUENESS RESULTS FOR DIRICHLET PROBLEM IN WEIGHTED SOBOLEV SPACES ON UNBOUNDED DOMAINS [J].
Boccia, Serena ;
Salvato, Maria ;
Transirico, Maria .
METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (02) :203-213
[44]   Probabilistic and average linear widths of weighted Sobolev spaces on the ball equipped with a Gaussian measure [J].
Wang, Heping .
JOURNAL OF APPROXIMATION THEORY, 2019, 241 :11-32
[45]   Entropy Solution for a Nonlinear Degenerate Parabolic Problem in Weighted Sobolev Space via Rothe's Time-discretization Approach [J].
Sabri, Abdelali ;
Jamea, Ahmed .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
[46]   Existence of ground state solutions for weighted biharmonic problem involving non linear exponential growth [J].
Dridi, Brahim ;
Jaidane, Rached .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) :831-851
[47]   Trace theorem and non-zero boundary value problem for parabolic equations in weighted Sobolev spaces [J].
Kim, Doyoon ;
Kim, Kyeong-Hun ;
Woo, Kwan .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (01) :134-172
[48]   OPTIMAL A PRIORI ERROR ESTIMATES IN WEIGHTED SOBOLEV SPACES FOR THE POISSON PROBLEM WITH SINGULAR SOURCES [J].
Ojea, Ignacio .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 :S879-S907
[49]   The transmission problem in domains with a corner point for the Laplace operator in weighted Holder spaces [J].
Bazaliy, Borys V. ;
Vasylyeva, Nataliya .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (10) :2476-2499
[50]   Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic [J].
Candito, P. ;
Li, L. ;
Livrea, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) :6360-6369