Nonlinear degenerate Navier problem involving the weighted biharmonic operator with measure data in weighted Sobolev spaces

被引:0
作者
Youssef Fadil
Mohamed El Ouaarabi
Chakir Allalou
Mohamed Oukessou
机构
[1] Sultan Moulay Slimane University,Laboratory LMACS, Faculty of Science and Technics
[2] Faculty of Sciences Aïn Chock,Fundamental and Applied Mathematics Laboratory
[3] Hassan II University,undefined
来源
Boletín de la Sociedad Matemática Mexicana | 2024年 / 30卷
关键词
Elliptic equations; Weighted biharmonic operator; Navier problem; Weighted Sobolev spaces; Weak solution; 35J15; 35J60; 35J66; 35J70; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form: Δ[ϕ(z)a(z,Δw)]-div[ϑ1(z)K(z,∇w)+ϑ2(z)L(z,w,∇w)]+ϑ2(z)L0(z,w,∇w)=h0-∑j=1nDjhj,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} \Delta \Big [\phi (z)a(z,\Delta w)\Big ]-\mathrm{{div}}\Big [ \vartheta _{1}(z)\mathcal {K}(z,\nabla w)+\vartheta _{2}(z)\mathcal {L}(z,w,\nabla w)\Big ] \\{} & {} \qquad +\vartheta _{2}(z)\mathcal {L}_{0}(z,w,\nabla w)=h_0-\sum \limits _{j=1}^{n} D_{j}h_{j} \;, \end{aligned}$$\end{document}where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, ϑ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _1$$\end{document} and ϑ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _2$$\end{document} are weight functions, a:D¯×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a:\overline{\mathcal {D}}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, K:D×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}:\mathcal {D}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, L:D×R×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, and L0:D×R×Rn⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_0:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}$$\end{document} are Carathéodory applications that verified some conditions, and h0∈L1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_0\in L^1(\mathcal {D})~$$\end{document} and hj∈Lp′(D,ϑ11-p′)(j=1,…,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_j\in L^{p'}(\mathcal {D},\vartheta _{1}^{1-p'})(j=1,\ldots ,n)$$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   Nonlinear boundary value problems in weighted Sobolev spaces [J].
Pfluger, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (02) :1263-1270
[22]   WEAK SOLUTIONS OF THE STOKES PROBLEM IN WEIGHTED SOBOLEV SPACES [J].
SPECOVIUSNEUGEBAUER, M .
ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) :195-203
[23]   The Poisson problem in weighted Sobolev spaces on Lipschitz domains [J].
Mitrea, Marius ;
Taylor, Michael .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (03) :1063-1089
[24]   Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces [J].
Cavalheiro, Albo Carlos .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (01) :141-153
[25]   The existence and uniqueness result of entropy solutions for a p(•)-Laplace operator problem in weighted Sobolev spaces [J].
Zuo, Jiabin ;
Sabri, Abdelali .
QUAESTIONES MATHEMATICAE, 2023, 46 (08) :1669-1694
[26]   Further spectral properties of the weighted finite Fourier transform operator and approximation in weighted Sobolev spaces [J].
Bourguiba, NourElHouda ;
Souabni, Ahmed .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) :634-649
[27]   Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains [J].
Monsurro, Sara ;
Transirico, Maria .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2014, 4 (01) :79-91
[28]   Existence and uniqueness of solutions of some nonlinear equations in Orlicz spaces and weighted Sobolev spaces [J].
Aharouch, L. ;
Benkirane, A. ;
Bennouna, J. ;
Touzani, A. .
RECENT DEVELOPMENTS IN NONLINEAR ANALYSIS, 2010, :170-+
[29]   PERSISTENCE OF SOLUTIONS TO NONLINEAR EVOLUTION EQUATIONS IN WEIGHTED SOBOLEV SPACES [J].
Paredes, Xavier Carvajal ;
Romero, Pedro Gamboa .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
[30]   PERSISTENCE PROPERTY IN WEIGHTED SOBOLEV SPACES FOR NONLINEAR DISPERSIVE EQUATIONS [J].
Carvajal, X. ;
Neves, W. .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) :493-510