Nonlinear degenerate Navier problem involving the weighted biharmonic operator with measure data in weighted Sobolev spaces

被引:0
|
作者
Youssef Fadil
Mohamed El Ouaarabi
Chakir Allalou
Mohamed Oukessou
机构
[1] Sultan Moulay Slimane University,Laboratory LMACS, Faculty of Science and Technics
[2] Faculty of Sciences Aïn Chock,Fundamental and Applied Mathematics Laboratory
[3] Hassan II University,undefined
来源
Boletín de la Sociedad Matemática Mexicana | 2024年 / 30卷
关键词
Elliptic equations; Weighted biharmonic operator; Navier problem; Weighted Sobolev spaces; Weak solution; 35J15; 35J60; 35J66; 35J70; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of weak solution for a nonlinear degenerate Navier problem involving the weighted biharmonic operator of the following form: Δ[ϕ(z)a(z,Δw)]-div[ϑ1(z)K(z,∇w)+ϑ2(z)L(z,w,∇w)]+ϑ2(z)L0(z,w,∇w)=h0-∑j=1nDjhj,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} \Delta \Big [\phi (z)a(z,\Delta w)\Big ]-\mathrm{{div}}\Big [ \vartheta _{1}(z)\mathcal {K}(z,\nabla w)+\vartheta _{2}(z)\mathcal {L}(z,w,\nabla w)\Big ] \\{} & {} \qquad +\vartheta _{2}(z)\mathcal {L}_{0}(z,w,\nabla w)=h_0-\sum \limits _{j=1}^{n} D_{j}h_{j} \;, \end{aligned}$$\end{document}where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, ϑ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _1$$\end{document} and ϑ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vartheta _2$$\end{document} are weight functions, a:D¯×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a:\overline{\mathcal {D}}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, K:D×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}:\mathcal {D}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, L:D×R×Rn⟶Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}^n$$\end{document}, and L0:D×R×Rn⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_0:\mathcal {D}\times \mathbb {R}\times \mathbb {R}^n\longrightarrow \mathbb {R}$$\end{document} are Carathéodory applications that verified some conditions, and h0∈L1(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_0\in L^1(\mathcal {D})~$$\end{document} and hj∈Lp′(D,ϑ11-p′)(j=1,…,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_j\in L^{p'}(\mathcal {D},\vartheta _{1}^{1-p'})(j=1,\ldots ,n)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On the Whitney Problem for Weighted Sobolev Spaces
    Tyulenev, A. I.
    Vodop'yanov, S. K.
    DOKLADY MATHEMATICS, 2017, 95 (01) : 79 - 83
  • [22] The behavior of the heat operator on weighted Sobolev spaces
    Hile, GN
    Mawata, CP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (04) : 1407 - 1428
  • [23] On the Whitney problem for weighted Sobolev spaces
    A. I. Tyulenev
    S. K. Vodop’yanov
    Doklady Mathematics, 2017, 95 : 79 - 83
  • [24] Existence and regularity results for a degenerate elliptic nonlinear equation on weighted Sobolev spaces
    Alimohammady, Mohsen
    Cattani, Carlo
    Kalleji, Morteza Koozehgar
    QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 157 - 171
  • [25] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    ZongMing Guo
    LinFeng Mei
    FangShu Wan
    XiaoHong Guan
    Science China Mathematics, 2017, 60 : 1399 - 1418
  • [26] Steklov–Neumann Biharmonic Problem in Weighted Spaces
    Hovik A. Matevossian
    Lobachevskii Journal of Mathematics, 2023, 44 : 5341 - 5354
  • [27] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    Guo, ZongMing
    Mei, LinFeng
    Wan, FangShu
    Guan, XiaoHong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1399 - 1418
  • [28] Embeddings of weighted Sobolev spaces and degenerate elliptic problems
    GUO ZongMing
    MEI LinFeng
    WAN FangShu
    GUAN XiaoHong
    ScienceChina(Mathematics), 2017, 60 (08) : 1399 - 1418
  • [29] Weighted Sobolev spaces and Poincare inequality for degenerate operators
    Stasi, Roberto
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (01): : 69 - 80
  • [30] ENTROPY SOLUTION FOR A NONLINEAR DEGENERATE ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION IN WEIGHTED SOBOLEV SPACES
    Sabri, A.
    Jamea, A.
    Alaoui, H. T.
    MATEMATICHE, 2021, 76 (01): : 109 - 131