Analogues of Ramanujan’s partition identities and congruences arising from his theta functions and modular equations

被引:0
作者
Nayandeep Deka Baruah
Kanan Kumari Ojah
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2012年 / 28卷
关键词
Theta functions; Modular equations; Partitions; Partition congruences; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the partition function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{[c^{l}d^{m}]}(n)$\end{document} defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{n=0}^{\infty}p_{[c^{l}d^{m}]}(n)q^{n}=(q^{c};q^{c})_{\infty}^{-l}(q^{d};q^{d})_{\infty}^{-m}$\end{document} and prove some analogues of Ramanujan’s partition identities. We also deduce some interesting partition congruences.
引用
收藏
页码:385 / 407
页数:22
相关论文
共 22 条
  • [1] Atkin A.O.L.(1967)Proof of a conjecture of Ramanujan Glasg. Math. J. 8 14-32
  • [2] Baruah N.D.(2000)A few theta function identities and some of Ramanujan’s modular equations Ramanujan J. 4 239-250
  • [3] Baruah N.D.(2007)Partition identities and Ramanujan’s modular equations J. Comb. Theory, Ser. A 114 1024-1045
  • [4] Berndt B.C.(2008)Partition identities arising from theta function identities Acta Math. Sin. Engl. Ser. 24 955-970
  • [5] Baruah N.D.(2005)Some new proofs of Ramanujan’s modular equations of degree 9 Indian J. Math. 47 99-122
  • [6] Berndt B.C.(2008)Some new proofs of modular relations for the Göllnitz–Gordon functions Ramanujan J. 15 281-301
  • [7] Baruah N.D.(2007)Partition-theoretic interpretations of certain modular equations of Schröter, Russel, and Ramanujan Ann. Comb. 11 115-125
  • [8] Bora J.(2010)Ramanujan’s cubic continued fraction and a generalization of his “Most beautiful identity” Int. J. Number Theory 6 673-680
  • [9] Baruah N.D.(2010)Ramanujan’s cubic continued fraction and Ramanujan type congruences for a certain partition function Int. J. Number Theory 6 819-834
  • [10] Bora J.(2010)Congruences modulo powers of 2 for a certain partition function Ramanujan J. 22 101-117