Solutions of the sine-Gordon equation with a variable amplitude

被引:0
作者
E. L. Aero
A. N. Bulygin
Yu. V. Pavlov
机构
[1] RAS,Institute of Problems in Mechanical Engineering
来源
Theoretical and Mathematical Physics | 2015年 / 184卷
关键词
sine-Gordon equation; wave equation; eikonal equation; functionally invariant solution; ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
We propose methods for constructing functionally invariant solutions u(x, y, z, t) of the sine-Gordon equation with a variable amplitude in 3+1 dimensions. We find solutions u(x, y, z, t) in the form of arbitrary functions depending on either one (α(x, y, z, t)) or two (α(x, y, z, t), β(x, y, z, t)) specially constructed functions. Solutions f(α) and f(α, β) relate to the class of functionally invariant solutions, and the functions α(x, y, z, t) and β(x, y, z, t) are called the ansatzes. The ansatzes (α, β) are defined as the roots of either algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining the ansatzes also contain arbitrary functions depending on (α, β). The proposed methods allow finding u(x, y, z, t) for a particular, but wide, class of both regular and singular amplitudes and can be easily generalized to the case of a space with any number of dimensions.
引用
收藏
页码:961 / 972
页数:11
相关论文
共 31 条
[1]  
Frenkel J.(1939)Functionally invariant solutions of wave equation Acad. Sci. USSR J. Phys. 1 137-149
[2]  
Kontorova T.(2007)Über eine particulôre Lösung der partiellen Differentialgleichung Mech. Solids 42 807-822
[3]  
Aero E. L.(1975)undefined IEEE Trans. Magnetics 11 751-754
[4]  
Bulygin A. N.(1976)undefined Phys. Rev. B 14 1496-1502
[5]  
Guéret P.(1946)undefined Uspekhi Mat. Nauk 1 38-42
[6]  
McMillan W. L.(1974)undefined Theor. Math. Phys. 21 1046-1057
[7]  
Chebyshev P. L.(2009)undefined Computational Continuum Mechanics 2 44-66
[8]  
Takhtadzhyan L. A.(1898)undefined Messenger Math. 27 99-118
[9]  
Faddeev L. D.(1932)undefined C. R. Acad. Sci. Paris 194 1437-1439
[10]  
Garagash I. A.(1934)undefined Travaux Inst. Physico-Math. Stekloff 5 259-2