CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography

被引:0
作者
Leonid Goubergrits
Ulrich Kertzscher
Bastian Schöneberg
Ernst Wellnhofer
Christoph Petz
Hans-Christian Hege
机构
[1] Charité – Universitaetsmedizin Berlin,Biofluidmechanics Laboratory
[2] German Heart Institute Berlin,Department of Cardiology
[3] Konrad Zuse Institute,Scientific Visualization
来源
The International Journal of Cardiovascular Imaging | 2008年 / 24卷
关键词
Left coronary artery; Geometry reconstruction; MRI; CT angiography; CFD; Wall shear stress;
D O I
暂无
中图分类号
学科分类号
摘要
Computational fluid dynamics (CFD) methods based on in vivo three-dimensional vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. This study compares geometric reconstruction and calculated wall shear stress (WSS) values based on magnetic resonance imaging (MRI) and computed tomography (CT). Both imaging methods were applied to a same 2.5-fold upscale silicon model of the left coronary artery (LCA) main bifurcation. The original model is an optically digitized post mortem vessel cast. This digitized geometry is considered as a “gold standard” or original geometry for the MRI versus CT comparative study. The use of the upscale model allowed generating a high resolution CT raw data set with voxel size of 0.156 × 0.156 × 0.36 mm3 and a high resolution MRI data set with an equivalent voxel size of 0.196 × 0.196 × 0.196 mm3 for corresponding in vivo conditions. MRI based reconstruction achieved a mean Hausdorff surface distance of 0.1 mm to the original geometry. This is 2.5 times better than CT based reconstruction with mean Hausdorff surface distance of 0.252 mm. A comparison of the calculated mean WSS shows good correlation (r = 0.97) and good agreement among the three modalities with a WSS of 0.65 Pa in the original model, of 0.68 Pa in the CT based model and of 0.67 Pa in the MRI based model.
引用
收藏
页码:411 / 421
页数:10
相关论文
共 50 条
[21]   Comparison of Computed Tomography-Based Artificial Intelligence Modeling and Magnetic Resonance Imaging in Diagnosis of Cholesteatoma [J].
Eroglu, Orkun ;
Eroglu, Yesim ;
Yildirim, Muhammed ;
Karlidag, Turgut ;
Cinar, Ahmet ;
Akyigit, Abdulvahap ;
Kaygusuz, Irfan ;
Yildirim, Hanefi ;
Keles, Erol ;
Yalcin, Sinasi .
JOURNAL OF INTERNATIONAL ADVANCED OTOLOGY, 2023, 19 (04) :342-349
[22]   Role of Non-invasive Imaging in Characterisation of Soft Tissue Vascular Anomalies: Comparison of Ultrasound with Contrast-Enhanced Magnetic Resonance Imaging [J].
Lakhera, Devkant ;
Sarda, Prashant ;
Waikhom, Premila Devi ;
Bhuyan, Dipu ;
Duara, Bijit Kumar .
JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2020, 14 (09)
[23]   Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: the magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study [J].
Groothuis, Jan G. J. ;
Beek, Aernout M. ;
Brinckman, Stijn L. ;
Meijerink, Martijn R. ;
van den Oever, Mijntje L. P. ;
Hofman, Mark B. M. ;
van Kuijk, Cornelis ;
van Rossum, Albert C. .
EUROPEAN HEART JOURNAL, 2013, 34 (26) :1990-1998
[24]   Comparison of computed tomography- and magnetic resonance imaging-based target delineation for cervical cancer brachytherapy [J].
Wang, Fang ;
Bu, Luyi ;
Wu, Qun ;
Jiang, Xue ;
Wu, Lingyun ;
Li, Yu ;
Xi, Bin ;
Lu, Zhongjie ;
Yan, Senxiang .
JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2020, 12 (04) :367-374
[25]   Rhinoplasty Pre-Surgery Models by Using Low-Dose Computed Tomography, Magnetic Resonance Imaging, and 3D Printing [J].
Baldi, Dario ;
Basso, Luca ;
Nele, Gisella ;
Federico, Giovanni ;
Antonucci, Giuseppe Walter ;
Salvatore, Marco ;
Cavaliere, Carlo .
DOSE-RESPONSE, 2021, 19 (04)
[26]   Carotid Plaque Diagnosis With 3-Dimensional Computed Tomography Angiography: A Comparison With Magnetic Resonance Imaging-Based Plaque Diagnosis [J].
Omi, Tatsuo ;
Hayakawa, Motoharu ;
Adachi, Kazuhide ;
Ohba, Shigeo ;
Sadato, Akiyo ;
Hasebe, Akiko ;
Ishihara, Takuma ;
Nakahara, Ichiro ;
Hirose, Yuichi .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (03) :488-493
[27]   Comparison of compressed sensing and controlled aliasing in parallel imaging acceleration for 3D magnetic resonance imaging for radiotherapy preparation [J].
Crop, Frederik ;
Guillaud, Ophelie ;
Amor, Mariem Ben Haj ;
Gaignierre, Alexandre ;
Barre, Carole ;
Fayard, Cindy ;
Vandendorpe, Benjamin ;
Lodyga, Kaoutar ;
Mouttet-Audouard, Raphaelle ;
Mirabel, Xavier .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 23 :44-47
[28]   A predictive model of radiation-related fibrosis based on the radiomic features of magnetic resonance imaging and computed tomography [J].
Wang, Jian ;
Liu, Rongjie ;
Zhao, Yu ;
Nantavithya, Chonnipa ;
Elhalawani, Hesham ;
Zhu, Hongtu ;
Mohamed, Abdallah Sherif Radwan ;
Fuller, Clifton David ;
Kannarunimit, Danita ;
Yang, Pei ;
Zhu, Hong .
TRANSLATIONAL CANCER RESEARCH, 2020, 9 (08) :4726-4738
[29]   3D cephalometric analysis using Magnetic Resonance Imaging: validation of accuracy and reproducibility [J].
Juerchott, Alexander ;
Saleem, Muhammad Abdullah ;
Hilgenfeld, Tim ;
Freudlsperger, Christian ;
Zingler, Sebastian ;
Lux, Christopher J. ;
Bendszus, Martin ;
Heiland, Sabine .
SCIENTIFIC REPORTS, 2018, 8
[30]   Comparison of chest computed tomography and 3-T magnetic resonance imaging results in patients with common variable immunodeficiency [J].
Bayraktaroglu, Selen ;
Cinkooglu, Akin ;
Dalgic, Ceyda Tunakan ;
Bogatekin, Gulhan ;
Uysal, Funda Elmas ;
Ardeniz, Omur .
ACTA RADIOLOGICA, 2023, 64 (05) :1841-1850