A Parallel Algorithm for the Estimation of the Global Error in Runge–Kutta Methods

被引:0
作者
R. Tirani
机构
[1] University of Milano,Department of Biotechnology and Bioscience
[2] Bicocca,undefined
来源
Numerical Algorithms | 2002年 / 31卷
关键词
ordinary differential equations; initial value problem; Runge–Kutta methods; parallel global error estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The object of this work is the estimate of the global error in the numerical solution of the IVP for a system of ODE's. Given a Runge–Kutta formula of order q, which yields an approximation yn to the true value y(xn), a general, parallel method is presented, that provides a second value yn* of order q+2; the global error en=yn−y(xn) is then estimated by the difference yn−yn*. The numerical tests reported, show the very good performance of the procedure proposed. A comparison with the code GEM90 is also appended.
引用
收藏
页码:311 / 318
页数:7
相关论文
共 17 条
  • [1] Enright W.H.(1991)Parallel defect control BIT 31 647-663
  • [2] Higham D.J.(1978)A Runge-Kutta method of order 10 J. Inst. Math. Appl. 21 47-59
  • [3] Hairer E.(1972)Comparing numerical methods for ordinary differential equations SIAM J. Numer. Anal. 9 603-637
  • [4] Hull T.E.(1985)Global error estimation for ODE's based on extrapolation methods SIAM J. Sci. Statist. Comput. 6 1-14
  • [5] Enright W.H.(1996)Software based on explicit RK formulas Appl. Numer. Math. 22 293-308
  • [6] Fellen B.M.(1976)Global error estimation for ordinary differential equations ACMTrans. Math. Software 2 200-203
  • [7] Sedgwick A.E.(1986)Thirteen ways to estimate the global error Numer. Math. 48 1-20
  • [8] Shampine L.F.(1979)Global error estimation in Adams PC-codes ACM Trans. Math. Software 5 415-430
  • [9] Baca S.(1993)Parallel interpolation of high-order Runge-Kutta methods Computing 50 175-184
  • [10] Shampine L.F.(undefined)undefined undefined undefined undefined-undefined