Search of Fractal Space-Filling Curves with Minimal Dilation

被引:0
|
作者
Yuri Malykhin
Evgeny Shchepin
机构
[1] Steklov Mathematical Institute,
来源
关键词
Space-filling curves; Minimal dilation; 52C99;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an algorithm for a search of extremal fractal curves in large curve classes. It heavily uses SAT-solvers—heuristic algorithms that find models for CNF boolean formulas. Our algorithm was implemented and applied to the search of fractal surjective curves γ:[0,1]→[0,1]d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :[0,1]\rightarrow [0,1]^d$$\end{document} with minimal dilation supt1<t2‖γ(t2)-γ(t1)‖dt2-t1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sup _{t_1<t_2}\frac{\Vert \gamma (t_2)-\gamma (t_1)\Vert ^d}{t_2-t_1}. \end{aligned}$$\end{document}We report new results of that search in the case of Euclidean norm. We have found a new curve that we call “YE”, a self-similar (monofractal) plane curve of genus 5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} with dilation 5+43/73=5.5890…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5+{43}/{73}=5.5890\ldots $$\end{document}  In dimension 3 we have found facet-gated bifractals (which we call “Spring”) of genus 2×2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2\times 2$$\end{document} with dilation <17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<17$$\end{document}. In dimension 4 we obtained that there is a curve with dilation <62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<62$$\end{document}. Some lower bounds on the dilation for wider classes of cubically decomposable curves are proven.
引用
收藏
页码:189 / 213
页数:24
相关论文
共 50 条
  • [1] Search of Fractal Space-Filling Curves with Minimal Dilation
    Malykhin, Yuri
    Shchepin, Evgeny
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (01) : 189 - 213
  • [2] A note on space-filling visualizations and space-filling curves
    Wattenberg, M
    INFOVIS 05: IEEE Symposium on Information Visualization, Proceedings, 2005, : 181 - 186
  • [3] Space-Filling Curves
    Holbrook, John
    MATHEMATICAL INTELLIGENCER, 1997, 19 (01): : 69 - 71
  • [4] Space-filling curves
    R. C. Mittal
    Resonance, 2000, 5 (12) : 26 - 33
  • [5] Sparser: Secure Nearest Neighbor Search with Space-filling Curves
    Fang, Siqin
    Kennedy, Sean
    Wang, Chenggang
    Wang, Boyang
    Pei, Qingqi
    Liu, Xuefeng
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 370 - 375
  • [6] Computing Space-Filling Curves
    P. J. Couch
    B. D. Daniel
    Timothy H. McNicholl
    Theory of Computing Systems, 2012, 50 : 370 - 386
  • [7] Computing Space-Filling Curves
    Couch, P. J.
    Daniel, B. D.
    McNicholl, Timothy H.
    THEORY OF COMPUTING SYSTEMS, 2012, 50 (02) : 370 - 386
  • [8] Neural Space-Filling Curves
    Wang, Hanyu
    Gupta, Kamal
    Davis, Larry
    Shrivastava, Abhinav
    COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 : 418 - 434
  • [9] SHORT ALGORITHMS FOR SPACE-FILLING CURVES
    GOLDSCHLAGER, LM
    SOFTWARE-PRACTICE & EXPERIENCE, 1981, 11 (01): : 99 - 99
  • [10] Space-filling curves in geospatial applications
    Gutman, R
    DR DOBBS JOURNAL, 1999, 24 (07): : 115 - +