Explainability of deep neural networks for MRI analysis of brain tumors

被引:0
作者
Ramy A. Zeineldin
Mohamed E. Karar
Ziad Elshaer
·Jan Coburger
Christian R. Wirtz
Oliver Burgert
Franziska Mathis-Ullrich
机构
[1] Karlsruhe Institute of Technology (KIT),Institute for Anthropomatics and Robotics
[2] Reutlingen University,Research Group Computer Assisted Medicine (CaMed)
[3] Menoufia University,Faculty of Electronic Engineering (FEE)
[4] University of Ulm,Department of Neurosurgery
来源
International Journal of Computer Assisted Radiology and Surgery | 2022年 / 17卷
关键词
Brain glioma; Computer-aided diagnosis; Convolutional neural networks; Explainable AI;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1673 / 1683
页数:10
相关论文
共 166 条
[1]  
Siegel RL(2021)Cancer statistics CA: A Cancer J Clinicians 71 7-33
[2]  
Miller KD(2018)Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer Nanotheranostics 2 70-86
[3]  
Fuchs HE(2021)Gold-based nanomaterials for the treatment of brain cancer Cancer Biol Med 18 372-387
[4]  
Jemal A(2017)Image-guided neurosurgery J Med Imag Radiation Sci 48 328-335
[5]  
Sonali VMK(2020)Computer aided diagnosis of brain tumor using novel classification techniques J Ambient Intell Humaniz Comput 12 7499-7509
[6]  
Singh RP(2020)DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images Int J Comput Assist Radiol Surg 15 909-920
[7]  
Agrawal P(2020)Computer-aided diagnosis in the era of deep learning Med Phys 24 1304-1305
[8]  
Mehata AK(2018)New machine-learning technologies for computer-aided diagnosis Nat Med 18 203-211
[9]  
Pawde DM(2020)nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation Nat Methods 8 22560-22570
[10]  
Narendra SR(2020)Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification IEEE Access 33 903-915