A new planar feeding method of dielectric rod antenna using dielectric resonator

被引:0
作者
Saeed Fakhte
机构
[1] Qom University of Technology,School of Electrical and Computer Engineering
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This article proposes a new method for exciting surface waves in dielectric rod antennas using dielectric resonator antennas. The method involves housing a rectangular dielectric resonator antenna with a dielectric constant of 10.2 inside a hollow cylindrical dielectric rod antenna made of Teflon. By exciting the TE111y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${TE}_{111}^{y}$$\end{document} and TE113y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${TE}_{113}^{y}$$\end{document} modes of the dielectric resonator antenna, a surface wave can be launched along the Teflon tube. This method offers the advantage of integrating the dielectric rod antenna with planar circuits, where maximum radiation in the direction normal to the board is desirable. Compared to other planar feeding methods, this technique leads to lower back lobe and sidelobe levels. I fabricated the proposed structure and conducted tests to measure its performance. The measured results show an impedance bandwidth of 22% from 7.35 to 9.4 GHz and a maximum gain of 14 dB. Additionally, the simulated radiation efficiency of the proposed antenna in the entire band is above 90%.
引用
收藏
相关论文
共 96 条
[1]  
Hirayama N(2022)Measurement technique for interface and surface conductivities at millimeter-wave frequencies using dielectric rod resonator excited by nonradiative dielectric waveguide IEEE Trans. Microw. Theory Tech. 70 2750-2761
[2]  
Nakayama A(2022)Dielectric rod loaded tunable substrate integrated waveguide slot antenna IET Microwaves Antennas Propag. 16 163-173
[3]  
Yoshikawa H(2022)Broadband high-gain SIW horn antenna loaded with tapered multistrip transition and dielectric slab for mm—Wave application IEEE Trans. Antennas Propag. 70 5947-5952
[4]  
Shimizu T(1982)Dielectric tapered rod antennas for millimeter-wave applications IEEE Trans. Antennas Propag. 30 54-58
[5]  
Kogami Y(1957)The radiation properties of end-fire aerials Proc. Inst. Elect. Eng. 104B 22-34
[6]  
De S(2021)A low-scattering pixelated dielectric rod waveguide probe for near-field measurement IEEE Trans. Antennas Propag. 69 8920-8925
[7]  
Koul SK(2022)Broadband high-gain SIW horn antenna loaded with tapered multistrip transition and dielectric slab for mm-wave application IEEE Trans. Antennas Propag. 70 5947-5952
[8]  
Samanta KK(2021)Circular dielectric rod with conformal strip of graphene as tunable terahertz antenna: Interplay of inverse electromagnetic jet, whispering gallery and plasmon effects IEEE J. Sel. Top. Quantum Electron. 27 1-8
[9]  
Chen Y(2022)Characteristics of space, leaky, and creeping waves in a uniaxial dielectric rod IEEE Trans. Antennas Propag. 70 1824-1836
[10]  
Zhang L(2018)All-dielectric rod antenna array for terahertz communications APL Photon. 3.5 051707-2632