A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds

被引:0
作者
Marco Andreatta
机构
[1] Marco Andreatta,Dipartimento di Matematica
来源
Milan Journal of Mathematics | 2009年 / 77卷
关键词
Primary 14J45; Secondary 14E30; Fano manifolds; rational curves; Picard number; pseudoindex;
D O I
暂无
中图分类号
学科分类号
摘要
A complex manifold X of dimension n such that the anticanonical bundle –KX := det TX is ample is called a Fano manifold. Besides the dimension, other two integers play an essential role in the classification of these manifolds, namely the pseudoindex of X, iX, which is the minimal anticanonical degree of rational curves on X, and the Picard number ρX, the dimension of N1(X), the vector space generated by irreducible complex curves modulo numerical equivalence . A (generalization of a) conjecture of Mukai says that ρX(iX – 1) ≤ n. In this paper we present some partial steps towards the conjecture, we show how one can interpretate and possibly solve it with the use of families of rational curves on a uniruled variety, and more generally with the instruments of Mori theory. We consider also other related problems: the description of some Fano manifolds which are at the border of the Mukai relations and how the pseudoindex changes via (some) birational transformation.
引用
收藏
页码:361 / 383
页数:22
相关论文
共 42 条
  • [1] Marco Andreatta(2004)Generalized Mukai conjecture for special Fano varieties CEJM 2 272-293
  • [2] Elena Chierici(2002)Special rays in the Mori cone of a projective variety Nagoya Math. J. 168 127-137
  • [3] Gianluca Occhetta.(2005)Fano manifolds with long extremal rays Asian J. Math. 9 523-543
  • [4] Marco Andreatta(2001)On manifolds whose tangent bundle contains an ample locally free subsheaf Inventiones Math. 146 209-217
  • [5] Gianluca Occhetta.(2006)Rational curves of minimal degree and characterizations of projective spaces Math. Ann. 335 937-951
  • [6] Marco Andreatta(2003)Sur une conjecture de Mukai Comment. Math. Helv. 78 601-626
  • [7] Gianluca Occhetta.(2007)On covering and quasi-unsplit families of rational curves Journal of the European Mathematical Society. 9 45-57
  • [8] Marco Andreatta(2002)Variétés complexes dont l’éclatée en un point est de Fano C. R. Math. Acad. Sci. Paris 334 463-468
  • [9] Jarosław A.Wiśniewski.(2005)Pseudo-index of Fano manifolds and smooth blowups Geom. Dedicata 114 79-86
  • [10] Carolina Araujo.(1992)Connexité rationnelle des variétés de Fano Ann. Sci. École Norm. Sup. 25 539-545