The Solution of a Generalized Sylvester Quaternion Matrix Equation and Its Application

被引:0
作者
Guang-Jing Song
Shaowen Yu
机构
[1] Weifang University,School of Mathematics and Information Sciences
[2] East China University of Science and Technology,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2017年 / 27卷
关键词
Moore–Penrose inverse; Generalized Sylvester matrix equation; -Hermitian matrix; 15A21; 15A22; 15A24; 15A33; 15A03;
D O I
暂无
中图分类号
学科分类号
摘要
An n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n $$\end{document} quaternion matrix is said to be η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian if A=Aη∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=A^{\eta {*}}$$\end{document}, where Aη∗=-ηA∗η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\eta {*}}=-\eta A^{*}\eta $$\end{document}, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is one of the quaternion units i, j, k, and A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{*}$$\end{document} is the conjugate transpose of A. In this paper, we investigate the generalized Sylvester quaternion matrix equation A1X1B1+A2X2B2+A3X3B3=C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{1}X_{1}B_{1}+A_{2}X_{2}B_{2}+A_{3}X_{3}B_{3}=C. \end{aligned}$$\end{document}We establish the necessary and sufficient conditions for the existence of a solution to this equation, and give an expression of the general solution to the equation when it is solvable. As an application, we derive the solvability conditions for the quaternion matrix equation A1X1A1η∗+A2X2A2η∗+A3X3A3η∗=C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{1}X_{1}A_{1}^{\eta *}+A_{2}X_{2}A_{2}^{\eta *}+A_{3}X_{3}A_{3} ^{\eta *}=C \end{aligned}$$\end{document}to have an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian solution as well as an expression of the η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Hermitian solution.
引用
收藏
页码:2473 / 2492
页数:19
相关论文
共 120 条
[1]  
Chen B(2015)Color image analysis by quaternion-type moments J. Math. Imaging Vis. 51 124-144
[2]  
Shu H(2016)Robust dense reconstruction by range merging based on confidence estimation Sci. Chin. Inf. Sci. 59 1-11
[3]  
Coatrieux G(2008)Equations Linear Algebra Appl. 429 1779-1809
[4]  
Chen G(2012) and Int. J. Control Autom. 10 905-9012
[5]  
Sun X(2012) in rings and rings with involution with applications to Hilbert space operators Int. J. Syst. Sci. 43 1580-1590
[6]  
Coatrieux JL(2014)Solving coupled matrix equations over generalized bisymmetric matrices Bull. Iran. Math. Soc. 40 295-323
[7]  
Chen Y(2012)The generalized Sylvester matrix equations over the generalized bisymmetric and skew-symmetric matrices Linear Algebra Appl. 437 1854-1891
[8]  
Hao C(2016)Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices IEEE Trans. Parallel Distrib. Syst. 27 2546-2559
[9]  
Wu W(1998)On the Hermitian solutions to a system of adjointable operator equations IEEE Proc. Aerospace Conf. 1 69-76
[10]  
Wu E(2013)Enabling personalized search over encrypted outsourced data with efficiency improvement Linear Multilinear Algebra 61 725-740