Weak Amenability of Locally Compact Quantum Groups and Approximation Properties of Extended Quantum SU(1, 1)

被引:0
|
作者
Martijn Caspers
机构
[1] Université de Franche-Comté,Laboratoire de Mathématiques
来源
关键词
Quantum Group; Approximate Identity; Norm Core; Compact Quantum Group; Basic Hypergeometric Series;
D O I
暂无
中图分类号
学科分类号
摘要
We study weak amenability for locally compact quantum groups in the sense of Kustermans and Vaes. In particular, we focus on non-discrete examples. We prove that a coamenable quantum group is weakly amenable if there exists a net of positive, scaling invariant elements in the Fourier algebra A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A(\mathbb{G})}$$\end{document} whose representing multipliers form an approximate identity in C0(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_0(\mathbb{G})}$$\end{document} that is bounded in the M0A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M0A(\mathbb{G})}$$\end{document} norm; the bound being an upper estimate for the associated Cowling–Haagerup constant.
引用
收藏
页码:1041 / 1069
页数:28
相关论文
共 50 条