We study weak amenability for locally compact quantum groups in the sense of Kustermans and Vaes. In particular, we focus on non-discrete examples. We prove that a coamenable quantum group is weakly amenable if there exists a net of positive, scaling invariant elements in the Fourier algebra A(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A(\mathbb{G})}$$\end{document} whose representing multipliers form an approximate identity in C0(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C_0(\mathbb{G})}$$\end{document} that is bounded in the M0A(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M0A(\mathbb{G})}$$\end{document} norm; the bound being an upper estimate for the associated Cowling–Haagerup constant.