Weak Amenability of Locally Compact Quantum Groups and Approximation Properties of Extended Quantum SU(1, 1)

被引:0
作者
Martijn Caspers
机构
[1] Université de Franche-Comté,Laboratoire de Mathématiques
来源
Communications in Mathematical Physics | 2014年 / 331卷
关键词
Quantum Group; Approximate Identity; Norm Core; Compact Quantum Group; Basic Hypergeometric Series;
D O I
暂无
中图分类号
学科分类号
摘要
We study weak amenability for locally compact quantum groups in the sense of Kustermans and Vaes. In particular, we focus on non-discrete examples. We prove that a coamenable quantum group is weakly amenable if there exists a net of positive, scaling invariant elements in the Fourier algebra A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A(\mathbb{G})}$$\end{document} whose representing multipliers form an approximate identity in C0(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_0(\mathbb{G})}$$\end{document} that is bounded in the M0A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M0A(\mathbb{G})}$$\end{document} norm; the bound being an upper estimate for the associated Cowling–Haagerup constant.
引用
收藏
页码:1041 / 1069
页数:28
相关论文
共 51 条
[1]  
Banica T.(1999)Representations of compact quantum groups and subfactors J. Reine Angew. Math. 509 167-198
[2]  
Bédos E.(2003)Amenability and co-amenability for locally compact quantum groups Int. J. Math. 14 865-884
[3]  
Tuset L.(2012)Approximation properties for free orthogonal and free unitary quantum groups J. Reine Angew. Math. 672 223-251
[4]  
Brannan M.(2013)Completely bounded representations of convolution algebras of locally compact quantum groups Münst. J. Math. 6 445-482
[5]  
Brannan M.(1985)Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups Am. J. Math. 107 455-500
[6]  
Daws M.(2011)Spherical Fourier transforms on locally compact quantum Gelf and pairs SIGMA 7 39-193
[7]  
Samei E.(2013)The J. Oper. Theory 69 161-928
[8]  
de Canniere J.(2011)-Fourier transform on locally compact quantum groups J. Lie Theory 21 905-106
[9]  
Haagerup U.(2011)Modular properties of matrix coefficients of corepresentations of a locally compact quantum group J. Oper. Theory 66 59-228
[10]  
Caspers M.(2011)Galois objects and cocycle twisting for locally compact quantum groups Commun. Math. Phys. 304 187-1079