Global existence and uniqueness for the magnetic Hartree equation

被引:0
作者
Pei Cao
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Journal of Evolution Equations | 2011年 / 11卷
关键词
35Q40; 35Q55; Global existence; Uniqueness; Magnetic potential;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}iu_{t}=Hu+\frac{1}{|x|}*|u|^{2}u,\quad (x,t)\in \mathbb{R}^{N}\times\mathbb{R}.\end{array}$$\end{document}Under appropriate assumptions, we can establish the local and global existence and uniqueness of the solution of the corresponding Cauchy problem that does not rely on Strichartz estimates.
引用
收藏
页码:811 / 825
页数:14
相关论文
共 25 条
[1]  
Bourgain J.(1998)Refinements of Strichartz’s inequality and application to 2D-NLS with critical nonlinearity Int. Math. Research Notices 5 253-283
[2]  
Chadam J.M.(1975)Global existence of solution to the Cauchy problem for time-dependent Hartree equations J.Math.Phys. 16 1122-1130
[3]  
Glassey R.T.(2008)Strichartz and smoothing estimates for dispersive equations with magnetic potentials Comm. Part. Diff. Equ. 33 1082-1112
[4]  
D’Ancona P.(2009)Smoothing estimates for the Schrödinger equation with unbounded potentials J. Differ. Equations 246 4552-4567
[5]  
Fanelli L.(2010)Endpoint Strichartz estimates for the magnetic Schrödinger equation J. Funct. Anal 258 3227-3270
[6]  
D’Ancona P.(2008)Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in J. European Math. Soc. 10 507-531
[7]  
Fanelli L.(2009)Magnetic virial identities, weak dispersion and Strichartz inequalities Math. Ann. 344 249-278
[8]  
D’Ancona P.(1980)On a class of nonlinear Schrödinger equations with nonlocal interaction Math. Zeitschr. 170 109-136
[9]  
Fanelli L.(1996)Exact smoothing properties of Schrödinger semigroup Amer. J. Math. 118 1215-1248
[10]  
Vega L.(1998)Scattering theory for the Hartree equaiton SIAM J. Math. Anal. 29 1256-1267