The Riemann boundary value problem related to the time-harmonic Maxwell equations

被引:0
作者
Pei Yang
Liping Wang
Zuoliang Xu
机构
[1] Renmin University of China,School of Mathematics
[2] Hebei Normal University,School of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Quaternion analysis; Riemann boundary value problem; Time-harmonic Maxwell equations; Teodorescu operator; matrix operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give the definition of Teodorescu operator related to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator and discuss a series of properties of this operator, such as uniform boundedness, Hölder continuity and so on. Then we propose the Riemann boundary value problem related to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator. Finally, using the intimate relationship of the corresponding Cauchy-type integral between the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} matrix operator and the time-harmonic Maxwell equations, we investigate the Riemann boundary value problem related to the time-harmonic Maxwell equations and obtain the integral representation of the solution.
引用
收藏
相关论文
共 47 条
  • [1] Hile G.N.(1978)Elliptic systems in the plane with first order terms and constant coefficients Commun. Partial Differ. Equ. 3 949-977
  • [2] Gilbert R.P.(1993)Vekua theory in higher dimensional complex spaces: the Complex Var. Theory Appl. 1 99-105
  • [3] Hou Z.Y.(2009)-operator in Acta Math. Sci. 29B 210-224
  • [4] Meng X.W.(2011)Boundary behavior of Cauchy-type integrals in Clifford analysis Adv. Appl. Clifford Algebras 21 49-87
  • [5] Du J.Y.(2014)On boundary behavior of the Cauchy type integrals with values in a universal Clifford algebra Complex Var. Elliptic Equ. 3 412-426
  • [6] Xu N.(2011)A kind of Riemann boundary value problems for pseudo-harmonic functions in Clifford analysis Sci. Sin. 41 85-496
  • [7] Du J.Y.(2016)The Dirichlet boundary value problems for some quaternion functions of higher order on the polydisc J. Inequal. Appl. 180 1-13
  • [8] Xu N.(2011)A kind of boundary value problem for inhomogeneous partial differential system Rend. Circ. Mat. Palermo 60 283-308
  • [9] Gu L.F.(2014)Degenerate elliptic boundary value problems with asymptotically linear nonlinearity Appl. Anal. 93 2413-2425
  • [10] Du J.Y.(2016)Some properties of the Teodorescu operator related to the Appl. Math. J. Chin. Univ. 31 469-480