Integration in Hilbert generated Banach spaces

被引:0
作者
Robert Deville
José Rodríguez
机构
[1] Université de Bordeaux 1,Laboratoire Bordelais d’Analyse et Geométrie, Institut de Mathématiques de Bordeaux
[2] Universidad Politécnica de Valencia,Instituto Universitario de Matemática Pura y Aplicada
[3] Universidad de Murcia,Departamento de Matemática Aplicada, Facultad de Informática
来源
Israel Journal of Mathematics | 2010年 / 177卷
关键词
Banach Space; Separable Banach Space; Density Character; Complete Probability Space; Generate Banach Space;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that McShane and Pettis integrability are equivalent for functions taking values in a subspace of a Hilbert generated Banach space. This generalizes simultaneously all previous results on such equivalence. On the other hand, for any super-reflexive generated Banach space having density character greater than or equal to the continuum, we show that Birkhoff integrability lies strictly between Bochner and McShane integrability. Finally, we give a ZFC example of a scalarly null Banach space-valued function (defined on a Radon probability space) which is not McShane integrable.
引用
收藏
页码:285 / 306
页数:21
相关论文
共 38 条
[1]  
Aniszczyk B.(1986)A theorem on completely additive family of real valued functions Bulletin of the Polish Academy of Sciences. Mathematics 34 597-598
[2]  
Frankiewicz R.(1988)Two remarks on absolutely summing operators Mathematische Nachrichten 136 229-232
[3]  
Belanger A.(2005)The Birkhoff integral and the property of Bourgain Mathematische Annalen 331 259-279
[4]  
Dowling P. N.(2001)A characterization of variationally McShane integrable Banach-space valued functions Illinois Journal of Mathematics 45 279-289
[5]  
Cascales B.(2003)When do McShane and Pettis integrals coincide? Illinois Journal of Mathematics 47 1177-1187
[6]  
Rodríguez J.(1972)An elementary characterization of absolutely summing operators Mathematische Annalen 196 101-105
[7]  
Di Piazza L.(1977)Measurability in a Banach space Indiana University Mathematics Journal 26 663-677
[8]  
Musiał K.(1979)Measurability in a Banach space. II Indiana University Mathematics Journal 28 559-579
[9]  
Di Piazza L.(2003)Hilbert-generated spaces Journal of Functional Analysis 200 301-323
[10]  
Preiss D.(2004)Inner characterizations of weakly compactly generated Banach spaces and their relatives Journal of Mathematical Analysis and Applications 297 419-455