Liouville-type theorems for a quasilinear elliptic equation of the Hénon-type

被引:0
作者
Quoc Hung Phan
Anh Tuan Duong
机构
[1] Duy Tan University,Institute of Research and Development
[2] Hanoi National University of Education,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2015年 / 22卷
关键词
Quasilinear; Liouville-type theorem; Hénon-typeequation; Primary 35B53; 35J62; Secondary 35K57; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hénon-type quasilinear elliptic equation -Δmu=|x|aup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\Delta_m u=|x|^a u^p}$$\end{document} where Δmu=div(|∇u|m-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta_m u={\rm div}(|\nabla u|^{m-2} \nabla u)}$$\end{document}, m > 1, p > m − 1 and a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\geq 0}$$\end{document}. We are concerned with the Liouville property, i.e. the nonexistence of positive solutions in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb R}^N}$$\end{document}. We prove the optimal Liouville-type theorem for dimension N < m + 1 and give partial results for higher dimensions.
引用
收藏
页码:1817 / 1829
页数:12
相关论文
共 50 条
[1]  
Bidaut-Véron M.F.(2001)Regular and singular solutions of a quasilinear equation with weights Asymptot. Anal. 28 115-150
[2]  
García-Huidobro M.(2005)On the H énon equation: asymptotic profile of ground states. II J. Differ. Equ. 216 78-108
[3]  
Byeon J.(2006)On the H énon equation: asymptotic profile of ground states. I. Ann Inst. H. Poincaré Anal. Non Linéaire 23 803-828
[4]  
Wang Z.-Q.(2009)Asymptotic behaviour of ground state solutions for the H énon equation IMA J. Appl. Math. 74 468-480
[5]  
Byeon J.(2009)Quasilinear elliptic equations of the Henon-type: existence of non-radial solutions Commun. Contemp. Math. 11 783-798
[6]  
Wang Z.-Q.(1844)Mémoires sur les fonctions complémentaires C. R. Acad. Sci. Paris 19 1377-1384
[7]  
Cao D.(1996)Quasilinear elliptic equations with critical exponents Topol. Methods Nonlinear Anal. 7 133-170
[8]  
Peng S.(1983) local regularity of weak solutions of degenerate elliptic equations Nonlinear Anal. 7 827-850
[9]  
Yan S.(1981)Global and local behavior of positive solutions of nonlinear elliptic equations Commun. Pure Appl. Math. 34 525-598
[10]  
Carrião P.C.(1989)Quasilinear elliptic equations involving critical Sobolev exponents Nonlinear Anal. 13 879-902