On maximal subgroups of free idempotent generated semigroups

被引:0
作者
R. Gray
N. Ruskuc
机构
[1] Centro de Álgebra da Universidade de Lisboa,School of Mathematics and Statistics
[2] University of St Andrews,undefined
来源
Israel Journal of Mathematics | 2012年 / 189卷
关键词
Maximal Subgroup; Regular Semigroup; Minimal Ideal; Rectangular Band; Ideal Extension;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following results: (1) Every group is a maximal subgroup of some free idempotent generated semigroup. (2) Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup. (3) Every group is a maximal subgroup of some free regular idempotent generated semigroup. (4) Every finite group is a maximal subgroup of some free regular idempotent generated semigroup arising from a finite regular semigroup. As a technical prerequisite for these results we establish a general presentation for the maximal subgroups based on a Reidemeister-Schreier type rewriting.
引用
收藏
页码:147 / 176
页数:29
相关论文
共 17 条
[1]  
Brittenham M.(2009)Subgroups of free idempotent generated semigroups need not be free Journal of Algebra 321 3026-3042
[2]  
Margolis S. W.(1985)Biordered sets come from semigroups Journal of Algebra 96 581-591
[3]  
Meakin J.(2010)Periodic elements of the free idempotent generated semigroup on a biordered set International Journal of Algebra and Computation 20 189-194
[4]  
Easdown D.(1972)On inverses of products of idempotents in regular semigroups Journal of the Australian Mathematical Society 13 335-337
[5]  
Easdown D.(1951)On the structure of semigroups Annals of Mathematics. Second Series 54 163-172
[6]  
Sapir M.(2002)Subgroups of the free semigroup on a biordered set in which principal ideals are singletons Communications in Algebra 30 5513-5519
[7]  
Volkov M.(1980)Subgroups of free idempotent generated regular semigroups Semigroup Forum 21 1-7
[8]  
Fitz-Gerald D. G.(1977)Idempotent generated completely 0-simple semigroups Semigroup Forum 15 41-50
[9]  
Green J. A.(1980)The biorder on the partial groupoid of idempotents of a semigroup Journal of Algebra 65 147-187
[10]  
McElwee B.(1968) 0- Glasgow Mathematical Journal 9 1-11