Quantum Graphs as Quantum Relations

被引:0
|
作者
Nik Weaver
机构
[1] Washington University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Quantum graphs; Quantum relations; Quantum error correction; Primary 47L25; 81P45; 81P47; Secondary 05C90; 46L10;
D O I
暂无
中图分类号
学科分类号
摘要
The “noncommutative graphs” which arise in quantum error correction are a special case of the quantum relations introduced in Weaver (Quantum relations. Mem Am Math Soc 215(v–vi):81–140, 2012). We use this perspective to interpret the Knill–Laflamme error-correction conditions (Knill and Laflamme in Theory of quantum error-correcting codes. Phys Rev A 55:900-911, 1997) in terms of graph-theoretic independence, to give intrinsic characterizations of Stahlke’s noncommutative graph homomorphisms (Stahlke in Quantum zero-error source-channel coding and non-commutative graph theory. IEEE Trans Inf Theory 62:554–577, 2016) and Duan, Severini, and Winter’s noncommutative bipartite graphs (Duan et al., op. cit. in Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013), and to realize the noncommutative confusability graph associated to a quantum channel (Duan et al., op. cit. in Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013) as the pullback of a diagonal relation. Our framework includes as special cases not only purely classical and purely quantum information theory, but also the “mixed” setting which arises in quantum systems obeying superselection rules. Thus we are able to define noncommutative confusability graphs, give error correction conditions, and so on, for such systems. This could have practical value, as superselection constraints on information encoding can be physically realistic.
引用
收藏
页码:9090 / 9112
页数:22
相关论文
共 50 条
  • [41] The first eigenvalue of the Laplacian on quantum graphs
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2016, 6 (04) : 365 - 391
  • [42] The Green function for simplest quantum graphs
    Sabirov, K. K.
    Aminov, U. A.
    Saparov, Kh. Sh.
    Karimov, M. K.
    Abdikarimov, Kh.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (06): : 762 - 766
  • [43] RECOVERING QUANTUM GRAPHS FROM THEIR BLOCH SPECTRUM
    Rueckriemen, Ralf
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (03) : 1149 - 1176
  • [44] Degenerate band edges in periodic quantum graphs
    Gregory Berkolaiko
    Minh Kha
    Letters in Mathematical Physics, 2020, 110 : 2965 - 2982
  • [45] Polynomial splines and eigenvalue approximations on quantum graphs
    Pesenson, I
    JOURNAL OF APPROXIMATION THEORY, 2005, 135 (02) : 203 - 220
  • [46] Degenerate band edges in periodic quantum graphs
    Berkolaiko, Gregory
    Kha, Minh
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (11) : 2965 - 2982
  • [47] Quantum Star Graphs and Spectral Branching Filter
    Hasebe, Yasunori
    Cheon, Taksu
    FOURTH INTERNATIONAL CONFERENCE ON QUANTUM, NANO AND MICRO TECHNOLOGIES: ICQNM 2010, PROCEEDINGS, 2010, : 65 - 70
  • [48] A note on Ambarzumian's theorem for quantum graphs
    Bifulco, Patrizio
    Kerner, Joachim
    ARCHIV DER MATHEMATIK, 2024, 123 (01) : 95 - 102
  • [49] On the limiting absorption principle and spectra of quantum graphs
    Ong, Beng-Seong
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 241 - 249
  • [50] Spectra of Schrodinger operators on equilateral quantum graphs
    Pankrashkin, Konstantin
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (02) : 139 - 154