Convergence analysis of an adaptive nonconforming finite element method

被引:0
作者
Carsten Carstensen
Ronald H.W. Hoppe
机构
[1] Humboldt-Universität zu Berlin,Department of Mathematics
[2] Universität Augsburg,Institute of Mathematics
[3] University of Houston,Department of Mathematics
来源
Numerische Mathematik | 2006年 / 103卷
关键词
Finite Element Method; Lower Order; Convergence Analysis; Refinement Process; Data Control;
D O I
暂无
中图分类号
学科分类号
摘要
An adaptive nonconforming finite element method is developed and analyzed that provides an error reduction due to the refinement process and thus guarantees convergence of the nonconforming finite element approximations. The analysis is carried out for the lowest order Crouzeix-Raviart elements and leads to the linear convergence of an appropriate adaptive nonconforming finite element algorithm with respect to the number of refinement levels. Important tools in the convergence proof are a discrete local efficiency and a quasi-orthogonality property. The proof does neither require regularity of the solution nor uses duality arguments. As a consequence on the data control, no particular mesh design has to be monitored.
引用
收藏
页码:251 / 266
页数:15
相关论文
共 19 条
[1]  
Agouzal C.(1994)Quasi-interpolation and a posteriori error analysis in finite element method Appl. Math. Lett. 7 1017-1202
[2]  
Ainsworth undefined(2005)undefined SIAM J Numer. Anal. 42 2320-undefined
[3]  
Bahriawati undefined(2005)undefined Computational Methods in Applied Mathematics, Vol 5 333-undefined
[4]  
Binev undefined(2004)undefined Numer. Math. 97 219-undefined
[5]  
Braess undefined(1990)undefined SIAM J. Numer. Anal. 27 979-undefined
[6]  
Brenner undefined(1989)undefined Math. Comp. 52 1-undefined
[7]  
Carstensen undefined(1999)undefined M2AN 33 1187-undefined
[8]  
Carstensen undefined(239)undefined I. Low order conforming, nonconforming and mixed FEM. Math. Comp. 71 945-undefined
[9]  
Carstensen undefined(2002)undefined Numer. Math. 92 233-undefined
[10]  
Dari undefined(1996)undefined RAIRO Model. Math. Anal. Numer. 30 385-undefined