Objective: Silicon, an abundant element in the earth’s crust, is a known factor in reducing the toxicity of plants. The effects of silicon were investigated to the amelioration of Zinc (Zn) toxicity on antioxidant enzyme activities (Superoxide dismutase (SOD), Catalase (CAT), and Glutathione Reductase (GR)), Hydrogen peroxide concentrations (H2O2), phenylalanine ammonia-lyase (PAL), and soluble protein (SP) in one bamboo species (Arundinaria pygmaea). Methods: This study was conducted in vitro condition to determine the effects of four Zn concentrations (100, 300, 500, and 1000 µmol/L) at two different concentrations of silicon (Si) (0 and 100 µmol/L) on a single bamboo species (Arundinaria pygmaea). Results: The results indicated that Si can stimulate the plant defense mechanism and ameliorate heavy metal stress caused by Zn concentrations, which can increase antioxidant enzyme and non-enzyme activity and decrease damaging effects caused by free radicals, H2O2, and soluble protein in this bamboo species. Conclusion: Furthermore, the results indicated that the combination of 100/300 µmol/L had a considerable impact on the reduction of Zn toxicity. © 2018, Korean Society of Environmental Risk Assessment and Health Science and Springer Nature B.V.