Determination of the crack configuration in an anisotropic elastic medium

被引:0
作者
A. O. Vatul’yan
I. V. Baranov
机构
[1] Rostov State University,
[2] Don State Technical University,undefined
来源
Acoustical Physics | 2005年 / 51卷
关键词
Acoustics; Boundary Element; Boundary Element Method; Open Function; Elastic Medium;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of the identification of a single internal crack in an anisotropic elastic body is investigated. Using the dislocation theory approach, a system of boundary integral equations for the crack opening functions is constructed and studied by the boundary element method. A crack identification method is developed on the basis of the crack parametrization by a finite number of parameters, with their subsequent determination through the minimization of a certain nonquadratic residual functional. The problem of identifying a transverse tunnel crack in an orthotropic layer is solved for the cases of plane and antiplane deformations.
引用
收藏
页码:385 / 391
页数:6
相关论文
共 20 条
[1]  
Boström A.(1995)undefined J. Acoust. Soc. Am. 97 2836-109
[2]  
Wirdelius H.(2000)undefined Akust. Zh. 46 685-undefined
[3]  
Roitman A. B.(1988)undefined J. Appl. Mech. 55 405-undefined
[4]  
Budreck D. E.(1990)undefined ASME Trans. J. Appl. Mech. 57 404-undefined
[5]  
Achenbach J. D.(1998)undefined ASME Trans. J. Appl. Mech. 65 300-undefined
[6]  
Krishnasamy G.(1990)undefined Mech. Res. Commun. 17 281-undefined
[7]  
Schmerr L.(1989)undefined Dokl. Akad. Nauk SSSR 307 324-undefined
[8]  
Rudolphi T. J.(1996)undefined Prikl. Mat. Mekh. 60 282-undefined
[9]  
Rizzo F. J.(1993)undefined Prikl. Mat. Mekh. 57 149-undefined
[10]  
Mukherjee S.(2001)undefined Proceedings of VI International Scientific and Engineering Conference on Dynamics of Technological Systems 1 105-undefined