Minimum perimeter partitions of the plane into equal numbers of regions of two different areas
被引:0
作者:
M.A. Fortes
论文数: 0引用数: 0
h-index: 0
机构:Departamento de Engenharia de Materiais e Instituto de Ciência e Engenharia de Materiais e Superfıcies,
M.A. Fortes
P.I.C. Teixeira
论文数: 0引用数: 0
h-index: 0
机构:Departamento de Engenharia de Materiais e Instituto de Ciência e Engenharia de Materiais e Superfıcies,
P.I.C. Teixeira
机构:
[1] Departamento de Engenharia de Materiais e Instituto de Ciência e Engenharia de Materiais e Superfıcies,
[2] Instituto Superior Técnico,undefined
[3] Avenida Rovisco Pais,undefined
[4] P-1049-001 Lisboa,undefined
[5] Portugal,undefined
来源:
The European Physical Journal E
|
2001年
/
6卷
关键词:
PACS. 83.80.Iz Emulsions and foams;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We identify the minimum-perimeter periodic tilings of the plane by equal numbers of regions (cells) of areas 1 and λ (minimal tilings), with at most two cells of each area per period and for which all cells of the same area are topologically equivalent. For λ close to 1 the minimal tiling is hexagonal. For smaller values of λ the minimal tilings contain pairs of 5/7, 4/8 and 3/9 cells, the cells with fewer sides having smaller area. The correlation between area fraction and number of sides in the minimal tilings is approximately linear and consistent with Lewis' law.