Diffusion of Finite-Size Particles in Confined Geometries

被引:0
作者
Maria Bruna
S. Jonathan Chapman
机构
[1] University of Oxford,Mathematical Institute
[2] Microsoft Research,undefined
来源
Bulletin of Mathematical Biology | 2014年 / 76卷
关键词
Brownian motion; Fokker–Planck equation; Diffusion in confined geometries; Entropic effects; Stochastic simulations;
D O I
暂无
中图分类号
学科分类号
摘要
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle’s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.
引用
收藏
页码:947 / 982
页数:35
相关论文
共 50 条
[31]   Diffusion of Brownian Particles under Oscillatory Shear Flow [J].
Takikawa, Yoshinori ;
Orihara, Hiroshi .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (12)
[32]   Normal and anomalous diffusion of Brownian particles on disordered potentials [J].
Salgado-Garcia, R. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 453 :55-64
[33]   Anisotropic diffusion of spherical particles in closely confining microchannels [J].
Dettmer, Simon L. ;
Pagliara, Stefano ;
Misiunas, Karolis ;
Keyser, Ulrich F. .
PHYSICAL REVIEW E, 2014, 89 (06)
[34]   Giant diffusion of underdamped particles in a biased periodic potential [J].
Lindner, Benjamin ;
Sokolov, Igor M. .
PHYSICAL REVIEW E, 2016, 93 (04)
[35]   DNA Diffusion in Aqueous Solution in Presence of Suspended Particles [J].
Sato, Hiroki ;
Masubuchi, Yuichi ;
Watanabe, Hiroshi .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (11) :1103-1111
[36]   Diffusion of interacting particles in a channel with reflection boundary conditions [J].
Khatri, Narender ;
Burada, P. S. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (09)
[37]   Anisotropic and Hindered Diffusion of Colloidal Particles in a Closed Cylinder [J].
Eral, H. B. ;
Oh, J. M. ;
van den Ende, D. ;
Mugele, F. ;
Duits, M. H. G. .
LANGMUIR, 2010, 26 (22) :16722-16729
[38]   Measuring collective diffusion coefficients by counting particles in boxes [J].
Carter, Adam ;
Mackay, Eleanor K. R. ;
Sprinkle, Brennan ;
Thorneywork, Alice L. ;
Marbach, Sophie .
SOFT MATTER, 2025, 21 (20) :3991-4002
[39]   Anisotropic Diffusion of Elongated Particles in Active Coherent Flows [J].
Li, Dongdong ;
Liu, Yanan ;
Luo, Hao ;
Jing, Guangyin .
MICROMACHINES, 2024, 15 (02)
[40]   Brownian walker in a confined geometry leading to a space-dependent diffusion coefficient [J].
Lançon, P ;
Batrouni, G ;
Lobry, L ;
Ostrowsky, N .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 304 (1-2) :65-76